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a b s t r a c t

In forecasting, there is a tradeoff between in-sample fit and out-of-sample forecast
accuracy. Parsimonious model specifications typically outperform richer model specifica-
tions. Consequently, information is often withheld from a forecast to prevent over-fitting
the data. We show that one way to exploit this information is through forecast com-
bination. Optimal combination weights in this environment minimize the conditional
mean squared error that balances the conditional bias and the conditional variance
of the combination. The bias-adjusted conditionally optimal forecast weights are time
varying and forward looking. Real-time tests of conditionally optimal combinations of
model-based forecasts and surveys of professional forecasters show significant gains in
forecast accuracy relative to standard benchmarks for inflation and other macroeconomic
variables.
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1. Introduction

The standard approach to forecast combination is to
onstruct combination weights based on the past perfor-
ance of the individual forecasts. This backward-looking
pproach is sensible, but it has also generated a puzzle.
mpirically, these strategies are not particularly effective.
nstead, it is often found that simple forecast combination
trategies, such as equal weights (averaging), produce the
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most reliably accurate forecasts.1 We show that a key
contributor to the poor performance of optimal forecast
combination strategies is that if the underlying forecasts
are biased in some way, then optimal weights are mis-
specified. We prove that when biases exist, the optimal
combination weights should minimize the mean squared
error conditional on any information that may predict
these biases.

To be concrete, assume that we wish to forecast yT+1
nd have two individual forecasts available, f1,T+1 and

f2,T+1, which can be combined linearly: fc,T+1 = wf1,T+1+

(1 − w)f2,T+1. In the classical framework of Bates and
Granger (1969), if the individual forecasts are unbiased,

1 A prominent empirical example of the forecast combination puzzle
for inflation is presented in Stock and Watson (2003). To the best of
our knowledge, the first formal reference to the forecast combination
puzzle in the literature is Stock and Watson (2004); however, the
results have certainly been acknowledged in the literature, at least
dating back to Bates and Granger (1969). Surveys and comments on
this finding are found in Clemen (1989), Diebold and Lopez (1996),
Elliott and Timmermann (2016), Granger (1989), Timmermann (2006),
and Wallis (2011).
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.e., the forecast errors e1,T+1 = yT+1 − f1,T+1 and e2,T+1 =

yT+1 − f2,T+1 have zero expectation, then the error of the
combined forecast ec,T+1 = yT+1 − fc,T+1 = we1,T+1 + (1−

w)e2,T+1 will have zero expectation, and its variance is

var(ec,T+1) = w2σ 2
e1 +(1−w)2σ 2

e2 +2w(1−w)ρe1,e2σe1σe2 ,

where σ 2
e1 = var(e1,T+1), σ 2

e2 = var(e2,T+1) and ρe1,e2 =

corr(e1,T+1, e2,T+1). The variance of the combined forecast
is minimized when

w∗
=

σ 2
e2 − ρe1,e2σe1σe2

σ 2
e1 + σ 2

e2 − 2ρe1,e2σe1σe2
. (1)

We call such a strategy backward looking because the
weights are based on the in-sample moments of the fore-
cast errors.

Now, consider the case in which a forecaster has ad-
ditional information, IT , that may be useful for predicting
yT+1. However, assume that the forecaster excludes this
information from the individual forecasts for the sake of
parsimony or because statistical tests have low power to
assess its relevance for forecasting given available data. If
that information is relevant, then the forecasts’ errors can
be decomposed as e1,T+1 = b1,T + ξ1,T+1 and e2,T+1 =

b2,T + ξ2,T+1, where b1,T = E(e1,T+1|IT ), b2,T = E(e2,T+1|IT )
and E(ξ1,T+1|IT ) = E(ξ2,T+1|IT ) = 0. There is no contradic-
tion here with the unbiasedness of the original forecasts
because unconditionally E(b1,T ) = E(b2,T ) = 0. We stress
that the unbiasedness assumption is not critical, and it is
relaxed later in the paper. The mean squared error (MSE)
conditional on It is

MSE(w) = (wb1,T + (1 − w)b2,T )2 + w2σ 2
ξ1

+ (1 − w)2σ 2
ξ2

+ 2w(1 − w)ρξ1,ξ2σξ1σξ2

where σ 2
ξ1

= var(ξ1,T+1|IT ), σ 2
ξ2

= var(ξ2,T+1|IT ) and
ρξ1,ξ2 = corr(ξ1,T+1, ξ2,T+1|IT ). The conditionally opti-
mal weights that minimize the conditional MSE to si-
multaneously balance the bias and variance components
are

w∗(IT ) =
σ 2

ξ2
+ b22,T − ρξ1,ξ2σξ1σξ2 − b1,Tb2,T

σ 2
ξ1

+ b21,T + σ 2
ξ2

+ b22,T − 2ρξ1,ξ2σξ1σξ2 − 2b1,Tb2,T
.

(2)

e call this strategy forward looking because it not only
elies on the in-sample moments of the conditional fore-
ast errors but also may rely on a conditional out-of-
ample forecast of the bias that varies over time.
A special case illustrates the advantages of the con-

itional approach. If ρξ1,ξ2 = 0 and b2,T = 0, then the
onditionally optimal solution is

σ 2
ξ2

σ 2
ξ1

+ b21,T + σ 2
ξ2

.

n the unconditional solution, the ratio between the vari-
nces determines the weight if the correlation is zero

i.e., w∗
=

σ2
e2

σ2
e1+σ2

e2
). The conditional bias now plays a

imilar role. The larger b21,T is, the smaller the weight
∗(I ). If σ = σ , i.e., if the models showed similar
T ξ1 ξ2

2

performance in the past, then the weights are not equal as
in (1) when ρe1,e2 = 0 and σe1 = σe2 . Instead, less weight
is placed on the model that is expected to be biased in the
forecasting period.2

In practice, of course, forecasters do not consider obvi-
ously biased forecasts. Forecasts are often selected specif-
ically because they are unbiased. Any residual bias in
a forecast is usually difficult either to detect or to re-
move. Moreover, adding additional predictors to a fore-
cast model to eliminate residual bias tends to increase
in-sample fit at the expense of out-of-sample forecast ac-
curacy. We prove that when the forecast bias is difficult to
correct, correcting the combination weights instead, while
leaving the underlying forecasts uncorrected, achieves the
greatest forecast accuracy.

Estimating time-varying optimal weights is also dif-
ficult in practice. For example, Claeskens et al. (2016)
and Smith and Wallis (2009) show that the estimation
noise of the error variance–covariances needed to con-
struct optimal weights is one explanation for the forecast
combination puzzle. Conditionally optimal weights of-
fer an advantage in this case. We find that estimates
of the conditional bias are much more stable than the
estimates of the unconditional or conditional variances
of the forecast errors. We show that ignoring the condi-
tional variances and relying solely on the predicted bias
to construct weights produces more accurate combined
forecasts than using equal weights. We suggest and test a
number of strategies based on this idea.

There are several related papers that support our for-
ward-looking approach. Giacomini and Rossi (2009) show
that detecting changes in relative forecast accuracy is
possible in real time. Timmermann and Zhu (2016) show
that a forward-looking approach to model selection is
useful in situations with weak predictors due to estima-
tion error. We, however, use the predictions to construct
combined forecasts rather than for model selection.3 Gi-
acomini and White (2006) propose a test of conditional
predictive ability that Granziera and Sekhposyan (2019)
use to establish whether relative forecasting performance
is predictable and to construct heuristic model averag-
ing strategies that are effective in forecasting. Our paper
complements (Giacomini & White, 2006) with the con-
ditional combination framework and provides theoreti-
cal foundations for the strategies used in Granziera and
Sekhposyan (2019). Finally, Montero-Manso et al. (2020)

2 We see from Eq. (2) that if b1,T = b2,T then the biases cancel
each other out, i.e., w∗(IT ) = w∗ . If biases are strongly positively
elated, i.e., b1,T ≈ b2,T , then w∗(IT ) ≈ w∗ . However, if the biases are
ery different from each other, then the conditionally optimal weights
∗(IT ) are very different from the unconditional optimal weights w∗ .

n the special case where σ 2
ξ1

≈ σ 2
ξ2
, similar biases do not help much

compared with the equal weight, but if the biases are substantially
different, the conditional optimal weight w∗(IT ) is different from equal
weight.
3 Clements and Hendry (1996) and Wallis and Whitley (1991) ex-

plore another related strategy known as intercept correction. Intercept
correction uses the most recently observed forecast errors to correct
the bias of a point forecast by adding the errors to the next forecast
to correct the model. Wallis and Whitley (1991) find that intercept
correction produces modest improvements over an uncorrected model
for forecasts of UK inflation and other macroeconomic variables.
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ses forward-looking (or future-based) strategies, which
chieved second place in the M4 competition of Makri-
akis et al. (2018), and Zhang and Zhang (2023) propose
forward-validation criterion for model averaging and

stablish its asymptotic optimality as well as its supe-
ior forecasting performance of the annual excess equity
remium over the S&P 500 index.
The basic concept of conditionally optimal combina-

ions is approached by Aiolfi and Timmermann (2006).
hey note that there is persistence in relative forecast per-
ormance among linear and nonlinear time-series models
sed to forecast a wide range of macroeconomic vari-
bles, and that this persistence can be exploited to select
orecasts and construct weights. However, their proposed
eights use a restricted information set that is backward

ooking and based on recent historical forecasting per-
ormance. We provide a general framework that allows
onditioning on any available information, which encom-
asses Aiolfi and Timmermann’s weights and is explicitly
orward looking.

We demonstrate the efficacy of conditionally optimal
nd forward-looking strategies in three real-time out-of-
ample forecasting exercises. First, we forecast a mea-
ure of United States (US) inflation using combinations
f ARMA, VAR, and direct forecasts. We choose US in-
lation as our base exercise because inflation forecasting
s hard (Stock & Watson, 2007) and because inflation
orecasts that rely on changes in real activity are found
o have time-varying forecast accuracy (Stock & Wat-
on, 2009), with inflation varying more with real activity
uring economic downturns. The time variation in the
orecast accuracy of different models of inflation is an
xample of the type of time-varying bias that should be
xploitable by conditionally optimal weights. We con-
irm this hypothesis and find that conditionally optimal-
eights forecasts consistently outperform equal-weights

orecasts in real-time forecasting comparisons.
We next test conditionally optimal weights for com-

ining survey responses of expert forecasters from the
uropean Central Bank’s (ECB) Survey of Professional Fore-
asters (SPF). We combine the individual forecasts to
redict the inflation rate implied by the Harmonized
ndex of Consumer Prices. We compare our forward-
ooking approach to the backward-looking bias-correction
pproach proposed by Issler and Lima (2009) for opti-
ally combining panels of biased forecasts. They propose
nonparametric strategy to estimate fixed forecast biases
o optimally bias-correct combined forecasts. We find that
his approach uniformly produces less accurate forecasts
han our forward-looking approach. We obtain this result
ecause the biases we observe are time varying and diffi-
ult to estimate in real time, which, as our theory predicts,
s an environment that is better suited to conditionally
ptimal weights.
To assess the robustness of our findings, we com-

are conditionally optimal strategies to unconditionally
ptimal and bias-correction strategies in hundreds of dif-
erent real-time out-of-sample exercises, which we create
y varying the individual forecasts included in the com-
ined forecasts. By varying the forecasts that we combine,
e

3

we can generate a distribution of out-of-sample fore-
casting results that act as a reality check in the spirit
of White (2000). We find that on average, forward-looking
strategies are superior to all considered challengers.

For the final forecasting exercise, we demonstrate the
tradeoff between bias correction and forecast accuracy
that we show exists in theory. We prove in Section 2 that
whether forecasts should be bias corrected or condition-
ally combined depends on the quality of the information
one has to predict the bias. When the available signal
in the information set for the bias is small relative to
its noise, constructing conditionally optimal weights is a
superior forecasting strategy, and vice versa. We demon-
strate this relationship empirically by real-time forecast-
ing 25 macroeconomic time series, including real GDP
growth, the GDP deflator measure of inflation, interest
rates, consumption growth, and investment growth, for
the US, Canada, the United Kingdom, Australia, and New
Zealand. The exercise reveals a clear positive relation-
ship between underlying forecast bias and the accuracy
of a bias-corrected combined forecast. When the bias is
small, bias correction is not an effective strategy. When
the bias is large, it is effective. In contrast, the accuracy
of a conditionally optimal combined forecast is unre-
lated to the size of the biases of the forecasts. It pro-
vides consistent improvements in accuracy relative to
equal-weights forecasts for all data types and countries
considered. Therefore, we find that conditionally optimal
weights and forward-looking approaches work both in
theory and in practice.

The remainder of this paper is organized as follows.
In Section 2, we provide the theory behind conditionally
optimal weights. Section 3 reports the results of a Monte
Carlo experiment. Section 4 provides some practical re-
finements for conditionally optimal weights based on the
properties observed in the Monte Carlo experiment. Sec-
tion 5 reports the results of a real-time out-of-sample
forecasting exercise for US inflation. Section 6 reports
the results for real-time forecasting of EU harmonized
inflation using the ECB Survey of Professional Forecasters.
Section 7 reports the results of real-time forecasting using
international macroeconomic data. Section 8 concludes
the paper.

2. Conditionally optimal weights

Assume that we wish to forecast yT+h ∈ R and consider
he vector of h-step-ahead forecasts f T+h = (f1,T+h, f2,T+h,

. . . , fn,T+h)′ ∈ Rk, where IT is the information set available
at time T . Following Giacomini and White (2006), we
assume that yt may follow a complex process marked
by measurement issues, structural changes, and nonsta-
tionarity induced by distribution changes. Following Aiolfi
and Timmermann (2006), we map all forecasts to the real
number line and limit our analysis to linear combinations
with weights w = (w1, w2, . . . , wn)′ to produce the com-
bined forecast fc,T+h = w′f T+h. We denote the vector of
forecasting errors as eT+h = yT+hι − f T+h, where ι is a
ector of ones, and the error of the combined forecast is

′

c,T+h = yT+h − fc,T+h = w eT+h.
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Given IT and assuming that the loss function L(·)
depends only on ec,T+h, the conditionally optimal combi-
nation weights, w∗(IT ), solve the problem4

w∗(IT ) = argmin
w

E[L(ec,T+h)|IT ]. (3)

nder mean squared error (MSE) loss, L(e) = e2, only
the first two conditional moments influence the optimal
weights, and the optimization problem can be solved
explicitly. We also assume that the forecasts are unbiased,
E(eT+h) = 0; thus we solve the optimization problem (3)
ubject to the restriction that the weights sum up to one,
′ι = 1. The existence of the first two moments of the
rrors, eT+h, is sufficient for the results derived in this
ection to be valid under our general data assumptions.
We assume that it is possible to decompose the origi-

al forecast errors, eT+h, as a sum of two parts such that
T+h = bT + ξT+h, bT = E(eT+h|IT ), and E(ξT+h|IT ) =

0. One simple example where this decomposition arises
naturally is when an autocorrelation is present in the fore-
casting errors, as in the empirical example in Section 6.5
In this case, the information set IT consists of previous
forecasting errors, and the conditional bias follows a first-
order autocorrelation model with ei,T+1 = φiei,T + ξi,T+1
(for h = 1) and bi,T = φiei,T . The remainder is ξi,T+1 =

ei,T+1 − φiei,T .
Given the decomposition eT+h = bT + ξT+h, we can

then derive the MSE

MSE(w) = (w′bT )2 + w′Σξw = w′(Σξ + bTb′

T )w,

with Σξ = var(ξT+h|IT ) = E(ξT+hξ
′

T+h|IT ). The MSE is
minimized by the conditionally optimal weights

w∗(IT ) =
[Σξ + bTb′

T ]
−1ι

ι′[Σξ + bTb′

T ]
−1ι

, (4)

where ι is a vector of ones. The minimum MSE that is
achieved by the conditionally optimal weights (4) is

MSE(w∗(IT )) =
1

ι′[Σξ + bTb′

T ]
−1ι

. (5)

Naturally, bT , Σξ , MSE(w), and the optimal solution
depend on IT . Without loss of generality, we assume Σξ

is constant for the remainder of this section, and to keep
the notation simple we note dependency on IT explicitly
only for the optimal solution w∗(IT ). This highlights the
fact that the conditionally optimal weights w∗(IT ) are time
varying because they depend on the information available
at time T .

4 For the optimization problem to be well defined, we need the
existence of the conditional moment E[L(ec,T+h)|IT ] and well-behaved
L(·) for the minimum to exist; see Elliott and Timmermann (2004) for
general loss functions and forecast error distributions. Using the loss
function of Lima and Meng (2017), it is possible to extend our approach
to combinations of quantile forecasts.
5 See also Figure A9 in the online appendix. Another example is

non-nested models, as in Timmermann and Zhu (2016). Assume the
data generating process yt+1 = (α1, α2)′Xt + (X ′

tγ )ηt+1 , where Xt =

(x1,t , x2,t )′ , and two forecasts f1,t+1 = α1x1,t and f2,t+1 = α2x2,t are
available. We have the following decomposition of the forecasting
errors: e1,t+1 = α2x2,t + (X ′

tγ )ηt+1 = b1,t + ξ1,t+1 and e2,t+1 =

1x1,t + (X ′
tγ )ηt+1 = b2,t + ξ2,t+1 with b1,t = α2x2,t , ξ1,t+1 = (X ′

tγ )ηt+1 ,
′

2,t = α1x1,t , ξ2,t+1 = (Xtγ )ηt+1 .

4

For comparison, the well-established classical results
see Elliott, 2011) for the unconditionally optimal weights

∗
=

Σ−1
e ι

ι′Σ−1
e ι

(6)

are based on the unconditional variance of the errors
Σe = var(eT+1) = Σξ + E(bTb′

T ), and the minimum of
var(ec,T+h) = w′Σew at w∗ is

1
ι′Σ−1

e ι
. (7)

The following central result formalizes the intuitive
idea that using more information allows us to construct
a better combined forecast.

Theorem 1. Given that the first and the second conditional
and unconditional moments exist, the following inequalities
hold:

(a) for the conditional and unconditional MSE, E(MSE
(w∗(IT ))) ≤ MSE(w∗), or equivalently E

[
minw w′

E(eT+he′

T+h|IT )w
]

≤ minw w′ E(eT+he′

T+h)w, or equiv-
alently

E
(

1
ι′[Σξ + bTb′

T ]
−1ι

)
≤

1
ι′Σ−1

e ι
;

(b) for the conditional MSE when two information sets
JT ⊂ IT are available, E(MSE(w∗(IT ))|JT ) ≤ MSE(w∗

(JT )), or equivalently E
[
minw w′ E(eT+he′

T+h|IT )w
⏐⏐ JT ]

≤ minw w′ E(eT+he′

T+h|JT )w, or equivalently

E

[
1

ι′
[
E(eT+he′

T+h|IT )
]−1

ι

⏐⏐⏐⏐⏐ JT
]

≤
1

ι′
[
E(eT+he′

T+h|JT )
]−1

ι
;

(c) for a convex loss function L(·) and JT ⊂ IT , if the condi-
tional expectations and the solutions of the minimiza-
tion problems exist, then E

[
minw E[L(ec,T+h)|IT ]

⏐⏐ JT ]
≤ minw E[L(ec,T+h)|JT ].

Proof. See online Appendix A1.1

There are several observations that help us understand
the new conditionally optimal weights. First, using uncon-
ditional weights w∗ is equivalent to using no information
to predict the errors, i.e., w∗

= w∗(∅). Second, if bT is
proportional to ι, i.e., the predictable parts are the same
for all forecasts, then by applying the Sherman–Morrison
formula it is possible to show that bT does not play a role
in the conditionally optimal weight, i.e., w∗(IT ) = w†

=
Σ

−1
ξ

ι

ι′Σ−1
ξ

ι
. Third, without predictability, i.e., if bT = 0, we have

w∗(IT ) = w∗ because Σξ = Σe in this case. The presence
of bias increases the MSE, i.e., 1

ι′Σ−1
ξ

ι
< 1

ι′[Σξ +bT b′
T ]−1ι

. Next,

if w∗ is used rather than w∗(IT ) when bT ̸= 0, then the
minimum of the MSE given by (5) is not achieved. That is,

MSE(w∗(IT )) =
1

ι′[Σξ + bTb′

T ]
−1ι

< w∗
′

[Σξ + bTb′

T ]w
∗

=
ι′Σ−1

e [Σξ + bTb′

T ]Σ
−1
e ι

[ι′Σ−1
e ι]2

.
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f the bias is ignored, i.e., w†
=

Σ
−1
ξ

ι

ι′Σ−1
ξ

ι
is used rather than

∗(IT ) when bT ̸= 0, then the minimum of the MSE given
y (5) is not achieved. That is,

SE(w∗(IT )) =
1

ι′[Σξ + bTb′

T ]
−1ι

< w†′

[Σξ + bTb′

T ]w
†

=
1

ι′Σ−1
ξ ι

+

[
ι′Σ−1

ξ bT

ι′Σ−1
ξ ι

]2

.

r using the Cauchy–Schwarz inequality, (ι′Σ−1
ξ bT )2 ≤

ι′Σ−1
ξ ι)(b′

TΣ
−1
ξ bT ), we have another upper bound MSE

w∗(IT )) < 1
ι′Σ−1

ξ
ι

[
1 + b′

TΣ
−1
ξ bT

]
. Finally, if h increases,

hen it is natural to expect that the predictable part, bT =

(eT+h|IT ), decreases (see Breitung & Knüppel, 2021). In
his situation, the conditionally optimal weights converge
o the unconditionally optimal weights as h → ∞.

When the conditional forecast bias is persistent, i.e., IT
{eT }, ei,T+1 = φei,T +ξi,T+1 (for h = 1), and the forecasts

re equally precise after the conditional bias is taken into
ccount, Σξ = I , then by applying the Sherman–Morrison
ormula to the conditionally optimal weights (4), we have

∗

AR1(IT ) =
ι − φ2/δ × (ι′eT ) × eT
n − φ2/δ × (ι′eT )2

with δ = 1 + φ2(e′

T eT ). If the average forecast was
unbiased in the previous period, (ι′eT ) = 0, then there
is no correction necessary in the next period, and the
optimal weights are just equal weights, i.e., w∗

AR1(IT ) =

ι/n. If the average forecast was positively biased in the
previous period, (ι′eT ) > 0, but a particular forecast i0 was
unbiased, ei0,T = 0, then this forecast does not need cor-
rection except for normalization, i.e., w∗

AR1,i0
(IT ) = 1/(n −

φ2/δ×(ι′eT )2). However, the forecasts with positive biases
in the previous period, ej,T > 0, are downgraded with
smaller weights w∗

AR1,j(IT ) < w∗

AR1,i0
(IT ), and the biggest

adjustment is applied to the forecast with the largest
error. At the same time, the forecasts with the negative
biases in the previous period, i.e., ek,T < 0, receive larger
weights w∗

AR1,k(IT ) > w∗

AR1,i0
(IT ). Symmetrical adjustments

will be observed for the case when (ι′eT ) < 0.
In addition to the simplifications above, the condi-

tionally optimal framework allows many extensions and
generalizations. Appendix A1.3 gives examples where an
ARMA model is used to capture autocorrelation in fore-
casting errors, or if the forecasts have an unconditional
bias in addition to the conditional bias, or if other loss
functions and forecast error distributions considered in El-
liott and Timmermann (2004) are used instead of the
MSE.

2.1. Bias correction approach

We now investigate the bias correction approach. In
theory, this is a superior forecasting strategy if the bias
can be precisely estimated.6 To see this, note that

6 The panel-data approach, in particular, delivered several important
findings in this area. Issler and Lima (2009) investigate bias-corrected
 r

5

perfectly bias-corrected forecasts f̃ T+h = f T+h + bT have
forecast errors ẽT+h = yT+hι − f̃ T+h = eT+h − bT = ξT+h,

hich are unbiased. Therefore, w†
=

Σ
−1
ξ

ι

ι′Σ−1
ξ

ι
is optimal,

nd it achieves the MSE =
1

ι′Σ−1
ξ

ι
, which is smaller than

the MSE achieved by the conditionally optimal solution
given by (5). However, this conclusion follows only when
bT is available. If only an estimate of b̂T is available, then
the relationship becomes more complicated.

Assume that the estimated bias is given by b̂T = bT +

ηT , where ηT is the estimation or measurement error. For
example, a relevant variable for forecasting many macroe-
conomic quantities is the output gap. However, as shown
by Orphanides and van Norden (2005), the measurement
error of the output gap is so large in real time that it
often provides little value to a forecaster. The adjusted
forecasts f̆ T+h = f T+h + b̂T have forecasting errors ĕT+h =

yT+hι − f̆ T+h = eT+h − b̂T = −ηT + ξT+h. Since ηT and
bT are related, ĕT+h will still have some predictable part
conditional on b̂T . Ignoring the predictable information
and using the weights w††

=
[Σξ +Ση]

−1ι

ι′[Σξ +Ση]−1ι
is suboptimal

and produces

MSE(w††) =
ι′[Σξ + Ση]

−1Ω1[Σξ + Ση]
−1ι

(ι′[Σξ + Ση]
−1ι)2

(where Ω1 = Σξ + var(ηT |̂bT ) + E(ηT |̂bT ) E(η′

T |̂bT )), while

the conditional solution w (̂bT ) =
[Σξ +Ση+̂bT b̂

′

T ]
−1ι

ι′[Σξ +Ση+̂bT b̂
′

T ]−1ι
is ap-

plied to the original forecasts and achieves MSE(w (̂bT )) =

ι′[Σξ + Ση + b̂T b̂
′

T ]
−1Ω2[Σξ + Ση + b̂T b̂

′

T ]
−1ι

(ι′[Σξ + Ση + b̂T b̂
′

T ]
−1ι)2

(where Ω2 = Σξ + var(bT |̂bT ) + E(bT |̂bT ) E(b′

T |̂bT )). If we
vary ηT , the MSE(w††) is unbounded while the MSE(w (̂bT ))
is bounded.

Theorem 2. If bT and ηT are elliptically distributed (e.g.,
have a normal or t-distribution), ηT = γ η0, and γ → ∞,
then MSE(w††)

p
→ ∞ and

MSE(w (̂bT ))
p

→
ι′[Ση0 + η0η

′

0]
−1
[
Σξ + Σb

]
[Ση0 + η0η

′

0]
−1ι

(ι′[Ση0 + η0η
′

0]
−1ι)2

.

Proof. See online Appendix A1.1.

In practice, forecasts with large estimation or mea-
surement issues would be discarded, and forecasts with
perfectly correctable biases would be corrected. Theo-
rem 2, though, shows that when a forecaster is uncertain

average forecasts when the elements of bT are independent of time
and drawn from identical (but perhaps dependent) distributions with
the mean B. In this case, the collective bias B can be estimated
onsistently when n → ∞. The bias-corrected average forecast is
symptotically optimal in this situation. Davies and Lahiri (1995) use
he generalized method of moments (GMM) to efficiently estimate
ndividual biases and standard errors. Davies (2006) expands the
ramework by including the forecast horizon as an additional panel di-
ension and conducts GMM tests for forecaster biases in the expanded

ramework. Gaglianone and Issler (2015) derive sequential asymptotic
esults for ‘big data’ applications.
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bout these quantities, conditionally optimal weights are
better choice. Noisy correction may significantly affect

he forecast performance of the individual forecasts. Com-
ining the corrected forecasts can somewhat offset the
ffect of noise, but ultimately, the forecast accuracy of the
ombined forecast is driven by the underlying forecasts
hat are combined. Since conditionally optimal weights
eave the underlying forecasts unchanged, the combined
orecast is less affected by this noise.

There are two special cases that illustrate this point.
irst, if bT = 0, so that only b̂T = ηT is observed, then

SE(w††) =
ι′[Σξ + Ση]

−1
[
Σξ + ηTη

′

T

]
[Σξ + Ση]

−1ι

(ι′[Σξ + Ση]
−1ι)2

,

which can become arbitrarily large when ηT is inflated. In
contrast, the conditionally optimal solution,

MSE(w (̂bT )) =
ι′[Σξ + Ση + ηTη

′

T ]
−1 Σξ [Σξ + Ση + ηTη

′

T ]
−1ι

(ι′[Σξ + Ση + ηTη
′

T ]
−1ι)2

,

cannot become arbitrarily large because ηT balances the
numerator and the denominator.

Second, the unconditional MSE of the combined fore-
cast is w′ var(eT+h)w. Assuming that there is no uncondi-
ional bias, i.e., E(eT+h) = 0, and that there is no corre-
ation between bT and ξT+h, the optimal weight is w∗

=

[Σξ +E(bT b′
T )]

−1ι

ι′[Σξ +E(bT b′
T )]

−1ι
and the corresponding MSE is MSE(w∗) =

1
ι′[Σξ +E(bT b′

T )]
−1ι

.
If bT is available, then the bias correction approach will

give us ẽT+h = ξT+h, the optimal weight w†
=

Σ
−1
ξ

ι

ι′Σ−1
ξ

ι
,

nd the corresponding MSE(w†) =
1

ι′Σ−1
ξ

ι
. Clearly, the

ias correction is preferable in this case, as MSE(w†) <

SE(w∗).
However, if only b̂T is available, then ignoring it and

sing eT+h will still produce the same w∗ and the cor-
responding MSE(w∗), but the bias correction will move
us to ĕT+h = −ηT + ξT+h, the optimal weight w††

=

[Σξ +Ση]
−1ι

ι′[Σξ +Ση]−1ι
, and MSE(w††) =

1
ι′[Σξ +Ση]−1ι

.

heorem 3. In the unconditional framework, MSE(w††) <

MSE(w∗) if and only if Ση < E(bTb′

T ).

Proof. See online Appendix A1.1.

In other words, the bias correction is a preferable
option if the estimation noise ηT has a relatively small
variance. However, if the noise dominates the signal, then
using the original forecast will produce a better outcome.

Our empirical application shows that the bias correc-
tion strategy is not superior to the conditionally optimal
weights in most cases. This is because bias correction
inflates the forecast error variances to Σξ +Ση , while the
onditionally optimal weights are used with the original
orecasts that are not contaminated by noise. Clements
nd Hendry (1996) show that a similar tradeoff exists
hen intercept correction strategies are pursued, which
se past forecast errors to correct for bias. In online Ap-

endix A1.4, we conduct two Monte Carlo experiments

6

to illustrate the tradeoff numerically in an i.i.d. enviro-
nment.

3. Monte Carlo exercise

Theory shows that conditionally optimal weights sho-
uld perform well in situations where bias is present but
small. When forecast bias is large, correcting individual
forecasts first and then combining should be the best
strategy. We investigate this result using a Monte Carlo
exercise following Lima and Meng (2017). We consider
the following location-scale model:

yt+1 = β0 +

∑
i

βixi,t +

(
γ0 +

∑
i

γixi,t

)
ηt+1 (8)

i = 1, 2, 3, . . . , 6; t = 1, 2, . . . , 1000,

where β0 = 1, ηt+1 ∼ N(0, σ 2
η ), and ση = 0.75. The sam-

ple size is set to 1000. For pseudo-forecasting purposes,
the same is partitioned into three subsets: 1) t < 500, 2)
500 ≤ t < 901, and 3) t > 900. The first subset is used to
provide initial estimates for our individual forecast mod-
els, which are described below. The second subset is used
to generate a sample of forecast errors for each individual
forecast model to construct the initial conditional bias
estimates required for conditionally optimal weights and
bias-correction forecasts. The final subset is the evaluation
period, which we recursively forecast with the individual
models and combined forecasts.

The number of potential predictors, xi,t , is fixed at six.
Predictors are drawn from a uniform distribution over
(0, 1), where, as in Lima and Meng (2017), we consider
the Spearman correlation among the predictors of ρ ∈

(0, 0.1, 0.25, 0.5, 0.95). Following Elliott et al. (2013), we
consider all distinct subsets of the six predictors of size 1,
2, and 3 as forecasting models. The forecast models take
the form of

yt+1 = b0 + bixi,t + bjxj,t + bkxk,t + et ,

where for subsets of size one, bj = bk = 0 and i =

1, . . . , 6; for subsets of size two, bk = 0 and there are 15
different combinations of xi,t and xj,t ; and for subsets of
size 3, we have 20 different combinations of xi,t , xj,t , and
xk,t .

We construct combined forecasts of the six individual
models (k = 1 in the notation of Complete Subset Regres-
sion (CSR) of Elliott et al., 2013), 21 models comprising all
subsets of n ≤ 2 (k = 2), and 41 models comprising all
subsets of n ≤ 3 (k = 3) using the following:

1. conditionally optimal weights (COW),
2. bias-corrected optimal weights (BC-OW),
3. bias-corrected equal weights (BC-EW), and
4. equal weights (CSR).

Bias-corrected optimal and equal weights apply condi-
tional bias correction to the individual forecasts first, be-
fore the forecasts are pooled using the designating strat-
egy. Conditional bias is modeled as an AR(1) with a con-
stant

ˆ
yi,t+1 − yt+1 = ei,t+1 = ci + φei,t + ζt+1.
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Table 1
Monte Carlo results for scale-location DGP – Weak and partially weak predictors.
Model ρ = 0 ρ = 0.1 ρ = 0.25 ρ = 0.5 ρ = 0.95

Rel. MSFE CW-stat Rel. MSFE CW-stat Rel. MSFE CW-stat Rel. MSFE CW-stat Rel. MSFE CW-stat

x1 0.9637 1.92 0.9730 1.65 0.9833 1.31 0.9951 0.74 1.0015 −0.27
x2 0.9641 1.92 0.9733 1.66 0.9815 1.37 0.9923 0.84 1.0016 −0.25
x3 1.0012 −0.12 1.0012 −0.14 1.0006 −0.22 1.0009 −0.15 1.0015 −0.23
x4 1.0006 −0.21 1.0009 −0.23 1.0011 −0.29 1.0011 −0.22 1.0014 −0.25
x5 1.0015 −0.28 1.0015 −0.31 1.0012 −0.18 1.0018 −0.22 1.0016 −0.24
x6 1.0011 −0.24 1.0011 −0.31 1.0011 −0.15 1.0016 −0.21 1.0015 −0.27

EW - 6/ CSR (k = 1) 0.9757 2.73 0.9816 1.64 0.9881 1.38 0.9957 0.98 1.0014 −0.26
CSR (k = 2) 0.9615 2.73 0.9699 2.46 0.9786 2.09 0.9883 1.43 1.0008 0.03
CSR (k = 3) 0.9511 2.73 0.9610 2.47 0.9712 2.13 0.9830 1.56 1.0008 0.09

COW - 6 0.9366 2.65 0.9491 2.40 0.9641 2.04 0.9851 1.39 1.0138 −0.12
COW - 21 0.9694 2.27 0.9868 2.03 1.0062 1.57 1.0260 1.14 1.0599 0.12
COW - 41 1.0024 2.05 1.0290 1.71 1.0526 1.32 1.0662 0.88 1.1153 0.00

BC-OW - 6 0.9393 2.62 0.9608 2.18 0.9623 2.02 0.9875 1.40 1.0195 −0.04
BC-OW - 21 0.9706 2.28 1.0048 1.74 1.0101 1.59 1.0281 1.13 1.0720 0.08
BC-OW - 41 1.0166 1.95 1.0596 1.45 1.0645 1.26 1.0891 0.83 1.1308 0.04

BC-EW - 6 0.9797 1.81 0.9885 1.33 0.9917 1.05 0.9986 0.45 1.0056 −0.09
BC-EW - 21 0.9651 2.28 0.9769 1.79 0.9817 1.57 0.9907 1.02 1.0043 0.05
BC-EW - 41 0.9544 2.47 0.9681 2.01 0.9738 1.82 0.9851 1.29 1.0036 0.14

# simulations: 250 250 250 250 250

Notes: Monte Carlo simulations for combined forecasts of a location-scale model following Lima and Meng (2017) given by Eq. (8). Each simulation
ecursively forecasts 100 periods, and the MSFE is recorded. The (Clark & West, 2007) test statistic (CW-stat) for equal forecast accuracy of the
ombined forecast relative to a forecast from a simple recursive average of past observations (yt ) is calculated for the 100 forecasts. The table shows
he mean relative MSFE and mean CW-stat for 250 simulations.
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he univariate benchmark is a simple recursive average of
t .
We assume weak and partially weak predictors with

i = γi = 0 for i = 3, 4, . . . , 6 for all t , β1 = −1.5 and
= 5 if ηt+1 ≤ Φ−1(0.5), and β2 = 1.5 and γ2 = 5

f ηt+1 > Φ−1(0.5), where Φ−1(x) refers to the x × 100
ercentile of the distribution of ηt .
Table 1 shows the mean Monte Carlo results from

50 experiments that each include 100 out-of-sample
orecasts. All results are reported relative to the uni-
ariate benchmark (a recursive average of yt ) with the
verage (Clark & West, 2007) test statistic from the 250
xperiments shown on the right. Note that by construc-
ion only x1,t and x2,t have any ability to forecast yt+1. The
emaining predictors are noise and provide no forecasting
ower above the benchmark.
The combined forecasts all show some ability to fore-

ast yt+1 relative to the benchmark forecast. Looking
cross the different forecast combination strategies, there
s a clear relationship between combined forecast accu-
acy and whether the combination strategy nests optimal
eights or equal weights. The former relies on a variance–
ovariance estimate of the forecast errors, while the latter
pecifications do not. Combinations based on optimal
ethods perform best when the number of models com-
ined (n) is small, and the correlation among the predic-
ors is low. For example, COW and BC-OW combinations
f the six single xi,t prediction models provide the lowest
SFE among the strategies tested when ρ ≤ 0.25. In
ontrast, when ρ ≥ 0.5, the best strategies rely on equal
eights and combine all 41 models.
 o

7

The explanation for this pattern is straightforward.
he majority of the forecasts that are combined in this
xercise are noise. Only two of the six predictors contain
ny information about the DGP by construction. The rest
re pure noise. Averaging over that noise with CSR, or BC-
W, zeroes it out and leads to better forecast accuracy.
ith COW or BC-OW, however, the variance–covariance
f the errors from the forecasts is exploited. The ad-
ition of many nearly identical noise forecasts leads to
ighly correlated forecast errors. The highly correlated
orecast errors lead to near multicollinearity in the fore-
ast error variance–covariance estimate, and to impreci-
ion in the estimated weights. In addition, the optimal
eights can be negative, which generates a range of is-
ues that, when unchecked, affect the combined forecast
erformance; see Radchenko et al. (2023).
Lastly, we find that combinations that bias-correct

he forecasts before combining them systematically yield
igher MSFEs than the combinations that use the pre-
icted bias to construct weights for combining the un-
orrected forecasts. This illustrates the insights discussed
n Section 2.1. Bias-correcting the individual forecasts
an introduce noise that the combined forecast cannot
emove. However, that same information can be used to
onstruct combination weights that improve upon other
ombination methods, such as CSR.

. Practical considerations and operational strategies

The Monte Carlo exercise reveals that conditionally

ptimal weights are sensitive to the inclusion of many
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ŵ

ˆ

a
e
n
t
a
w
a
e

t
f
i
t

e
r
g
g
a
t
t
o
a
c
g
f
m
l
t
v
a

c
r
o
m
t
f
g
a
q
r
t
A

5

a
A
A
(

rrelevant forecasts, especially if the forecasts are corre-
ated. Optimal strategies perform well when there are
ewer forecasts and when the forecast errors are less
orrelated. The equal-weights strategy performs better
hen there are many forecasts and the forecast errors are
orrelated. In practice, therefore, conditionally optimal
eights may benefit from small modifications that pro-
ide more robust estimates of Σξ , shrinking the weights
owards equal weights, or ignoring Σξ and using only the
stimates of the bias.
We consider two different shrinkage strategies to ex-

lore in our empirical application. The first relies on con-
tructing a linear combination of the estimates with a
ixed stabilization matrix Σ0 such that αΣ0+(1−α)[Σ̃ξ +

T b̂
′

T ], 0 < α < 1, and

∗

COWS(IT ) =
(αΣ0 + (1 − α)[Σ̃ξ + b̂T b̂

′

T ])
−1ι

ι′(αΣ0 + (1 − α)[Σ̃ξ + b̂T b̂
′

T ])−1ι
. (9)

We refer to ŵ∗

COWS(IT ) as conditionally optimal weights
with shrinkage (COWS). The second relies on ignoring the
Σ̂ξ estimate entirely and using only the conditional bias
estimates. The weights in this case are

w∗

b(IT ) =
[̂bT b̂

′

T ]
−ι

ι′ [̂bT b̂
′

T ]
−1ι

,

where the generalized inverse [̂bT b̂
′

T ]
−1 can be employed

n the case of singularity. This strategy is explicitly for-
ard looking because its efficacy depends only on the
redictability of the bias.
Two natural refinements to make when using the pre-

icted bias are

∗

PB(IT ) =
1∑n

l=1 b̂
−2
l,T

(̂
b−2
1,T , . . . , b̂

−2
n,T

)′
, (10)

which intuitively places larger weights on the forecasts
with smaller biases, and

w∗
PE(IT ) =

1∑n
l=1 exp(−γ b̂ 2

l,T )

(
exp(−γ b̂ 2

1,T ), . . . , exp(−γ b̂ 2
n,T )

)′

, (11)

which uses the same information but decreases the weig-
hts faster as the bias increases.7 The parameter γ acts
as a tuning parameter, governing the speed at which the
weights change, with γ = 0 leading to equal weights
nd γ → ∞ placing all weight on a single forecast. The
xponential function is also bounded when the bias is
ear zero, which stabilizes the weights further relative
o the previous strategies. In addition, in the absence of
predictable bias in any of the forecasts (̂bT = 0), the
eights collapse to equal weights. We refer to ŵ∗

PB(IT )
s predicted bias weights (PBW) and ŵ∗

PE(IT ) as predicted
xponential weights (PEW).

7 The predicted bias weights are similar to inverse MSE weights
when the mean is calculated over a short sample. In Appendix A2.2.2
and A2.3, we compare this type of strategy and other related inverse
MSE strategies to the conditionally optimal weights. We find that the
conditionally optimal weights offer forecasting advantages over these
alternatives.
8

5. Real-time forecasting: US inflation

We go into some detail in this section on how we con-
duct and evaluate real-time forecasts. We use the same
methodology for the subsequent two exercises.

5.1. Data, models, and inference

We use data from the Philadelphia Federal Reserve’s
Real-Time Macroeconomic data set for this exercise, which
allows us to restrict the information in each period to
that which would have been available to a forecaster at
the time a forecast is made.8 The measure of inflation
hat we consider is constructed from the Price Index
or Personal Consumption Expenditure (PCE). Quarterly
nflation is defined as πt = ln(pt/pt−1)× 400, where pt is
he price index.

We use five different variants of real GDP and un-
mployment to predict inflation and forecast errors. The
eal GDP measure is used to create three predictors: GDP
rowth, constructed as log-differenced GDP; the output
ap, constructed using the Hodrick–Prescott (HP) filter;
nd a GDP growth gap measure, which is constructed as
he difference between the current GDP growth rate and
he maximum GDP growth rate observed over the previ-
us 12 quarters. The unemployment rate is used in levels
nd as a one-sided unemployment gap measure, which is
onstructed using the same method as the GDP growth
ap. The unemployment gap and growth gap measures
ollow Stock and Watson (2010) and provide one-sided
easures of the business cycle to capture possible non-

inearities in the Phillips curve. We construct each of
hese measures anew every period using the appropriate
intage of data to ensure that information not available to
forecaster does not contaminate our predictions.
The forecast of interest is the four-quarter-ahead fore-

ast of quarterly inflation, which is expressed as an annual
ate.9 In the real-time data set, quarterly PCE inflation
ften appears with a lag even though some additional
onthly data are often available. We take the data in

he Philadelphia Fed’s data set as the sole source of in-
ormation available at any given point in time. The tar-
et measure of inflation used to evaluate forecasts is
composite series constructed from the second-release
uarterly observations of inflation as they appear in the
eal-time data set. Comparisons of the composite series to
he most recent vintage of inflation are available in online
ppendix A2.

.1.1. Models
We select a collection of parsimonious ARMA, VAR,

nd direct forecast (DF) models to forecast inflation. The
RMA models we consider are an AR(1), AR(2), AR(4),
RMA(1,1), ARMA(4,4), and the naïve random walk model
AO) proposed by Atkeson and Ohanian (2001), which

8 A detailed description of the data set and an explanation of its use-
fulness for evaluating forecasting strategies are provided by Croushore
and Stark (2001).
9 We explored horizons of one to eight quarters and cumulative

definitions of inflation, and the results were qualitatively the same.
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s the average of the previous four quarters of inflation.
hese models reflect commonly used benchmark fore-
asts employed in the literature. For example, the AO
orecast is found to forecast inflation well since the mid-
980s. The AO forecast compares well to the inflation
ap forecasting strategy proposed by Stock and Wat-
on (2007), as shown by Faust and Wright (2013). The
RMA(1,1) is the benchmark forecast employed by Ang
t al. (2007), who compared dozens of different forecast
pecifications covering surveys, ARMA models, regres-
ions using real-activity measures, and term structure
odels. The AR(4) is the benchmark in Stock and Watson

2010).
We consider six VAR specifications that we refer to

s Phillips curve (PC) models because they use lagged
nflation and real activity measures to predict inflation.
ive of the six VAR specifications are bi-variate VARs
ith two lags of inflation and two lags of a real activity
easure. The final VAR specification (VAR All) includes

our variables: inflation, output gap, GDP growth, and
he unemployment gap. The VAR All specification is a
obustness check. The model includes all the information
hat we find forecasts the biases well. If this information
s more useful to forecast inflation directly rather than to
onstruct weights, then this specification should reflect
hat reality.

The conditional bias in the forecast errors is modeled
s

i,t+4 = ci + βixt + ξi,t+4, (12)

here ei,t+4 = πt+4 − Ei,tπt+4 is the four-quarter-ahead
forecast error, and xt is a real activity measure. This par-
simonious specification is chosen to keep our forecasting
exercise as transparent as possible. We use the same
real activity measures here as in the individual forecast
models. This way we are not intentionally biasing our
individual forecasts by leaving out relevant predictors.
Instead, we are simply using the same information in a
different way.

To further verify that we are not intentionally bias-
ing our forecasts, we also include five direct forecast
specifications in our combinations. The direct forecasts
are OLS regressions of a given real activity measure on
four-quarter-ahead inflation, which mimics the exact way
we model conditional bias, but used to forecast inflation
directly. The DF forecasts along with the ARMA and PC
forecasts brings the total number of forecasts we wish to
combine to 17.

5.1.2. Out-of-sample forecasts: Evaluation and inference
We evaluate forecasts based on bias, measured by

the mean forecast error (MFE), and accuracy, measured
by the root mean squared forecast error (RMSFE). In-
ferences on the observed differences in RMSFE are ob-
tained using the Diebold and Mariano (1995) (DM) test for
equal within-sample forecast accuracy, with the Harvey
et al. (1997) small sample size and long horizon cor-
rection. There is not much guidance in the literature on
the correct test statistic for evaluating combined fore-
casts. Most test statistics assume asymptotic convergence

to stationary distributions for the estimated regression

9

coefficients of the models considered and of the forecast
errors (see West, 2006). Neither holds in our case. The
DM test statistic follows the recommendations provided
by Clark and McCracken (2013) for evaluating forecasts on
real-time data. Inference on the bias results is obtained
using a t-test with Newey and West (1987) standard
errors.

The forecast error series is constructed using real-time
errors obtained from comparing past real-time forecasts
to the composite series of second-release information,
which is supplemented with the first-release information
for the most recent observations at each point when a
forecast is made. This is consistent with a forecaster who
is keeping track of the revisions as new data become
available. Importantly, no data that would not have been
available to the forecaster at the time the forecast is made
are used. This convention makes it so that the individ-
ual forecast model’s bias, which informs the combination
weights, will closely match the real-time bias that we
report for each individual model. We also explored using
each new vintage of data at each point in time as the
benchmark for creating a new history of forecast errors.
Under this approach, the real-time estimates of a fore-
cast’s bias that we report, and the bias used to inform the
combination weights, may differ over time. However, we
found that the results changed little under this alternative
scenario.

The out-of-sample forecasting exercise requires the
data to be separated into three periods. The required
divisions are (1) a training period to estimate the ini-
tial parameters of the forecast models, (2) an in-sample
forecasting period to recursively construct an initial se-
ries of forecast errors to estimate Eq. (12), and (3) an
out-of-sample period to conduct out-of-sample forecasts.
For the full sample experiment, the three periods are
1947Q2–1965Q4, 1966Q1–1969Q4, and 1970Q1–2018Q1,
respectively, where the last forecast is made in 2017Q1
and compared with the realization in 2018Q1. In add-
ition, we consider two subsamples with periods 1947Q2–
1965Q4, 1966Q1–1982Q4, and 1983Q1–2007Q3 and pe-
riods 1947Q2–1965Q4, 1966Q1–2007Q3, and 2007Q4–
2018Q1.

5.2. Results

Table 2 reports the real-time forecasts of inflation and
their bias-corrected counterparts. The first column shows
the MFE of each model for the full sample. All of the fore-
casts are found to be unbiased by this measure. However,
the opposite result is obtained for the two subsample
periods, where both show a positive bias. The two results
are reconciled by the fact that inflation was generally
rising during the first part of the sample and falling or
steady during the two subsamples. The relatively stable
inflation observed in the 1960s did not prove useful to
forecast the dramatic rise in inflation seen in the 1970s,
leading to negative biases. Likewise, the low and stable
inflation of the latter part of the sample was a surprise to
forecasts based on the experience of the 1970s and 1980s.

The bottom panel of Table 2 shows the results for

bias-corrected forecasts, where we use Eq. (12) and the



C.G. Gibbs and A.L. Vasnev International Journal of Forecasting xxx (xxxx) xxx

a

o
p

E

B
s
s
b
p
p
e
d
c
r
b

Table 2
Individual uncorrected and bias-corrected real-time forecasts of US inflation.
Uncorrected Horizon: Four quarters

Full sample: 1970Q1–2017Q1 Subsample: 1983Q1–2007Q3 Subsample: 2007Q4–2017Q1

MFE RMSFE Rel. RMSFE MFE RMSFE Rel. RMSFE MFE RMSFE Rel. RMSFE

AO 0.06 2.29 1.00 0.02 1.48 1.00 0.06 1.97 1.00
AR(1) −0.11 2.56 1.12 0.84 1.58 1.07 1.11 2.21 1.12
AR(2) −0.07 2.35 1.03 0.64 1.51 1.02 0.89 2.16 1.10
AR(4) −0.21 2.46 1.08 0.63 1.51 1.02 0.85 2.15 1.09
ARMA(1,1) −0.08 2.30 1.01 0.57 1.47 0.99 0.79 2.12 1.07
ARMA(4,4) −0.16 2.48 1.08 0.70 1.66 1.12 0.64 2.05 1.04
DF Output Gap −0.04 3.17 1.39 1.30 2.17 1.46 1.70 2.51 1.27
DF Unemployment Gap 0.07 2.92 1.28 1.22 1.85 1.25 1.84 2.51 1.27
DF GDP Growth −0.11 2.93 1.28 1.10 1.76 1.19 1.61 2.34 1.19
DF Growth Gap 0.07 2.91 1.27 1.27 1.87 1.26 1.74 2.43 1.23
DF Unemployment Rate 0.37 2.98 1.30 1.42 2.12 1.43 2.13 2.82 1.43
VAR ALL −0.21 2.49 1.09 0.71 1.61 1.09 0.81 2.20 1.12
PC Output Gap 0.02 2.35 1.03 0.62 1.57 1.06 0.97 2.28 1.15
PC Unemployment Gap −0.28 2.39 1.04 0.54 1.46 0.98 0.72 2.13 1.08
PC GDP Growth −0.04 2.30 1.01 0.53 1.51 1.02 0.76 2.15 1.09
PC Growth Gap 0.21 2.45 1.07 0.81 1.73 1.17 1.23 2.40 1.22
PC Unemployment Rate −0.25 2.45 1.07 0.54 1.78 1.20 0.48 2.13 1.08

Bias-corrected

AO −2.23 5.44 2.38 −0.37 2.70 1.82 −0.14 3.56 1.81
AR(1) −2.46 5.29 2.32 −0.90 2.84 1.91 −0.48 3.63 1.84
AR(2) −2.25 5.23 2.29 −0.62 2.74 1.85 −0.33 3.59 1.82
AR(4) −2.51 5.25 2.30 −1.05 2.87 1.93 −0.60 3.64 1.85
ARMA(1,1) −2.26 5.13 2.24 −0.72 2.84 1.92 −0.59 3.61 1.83
ARMA(4,4) −3.31 5.44 2.38 −2.40 3.63 2.45 −1.78 4.07 2.06
DF Output Gap −1.69 5.71 2.50 −0.64 2.97 2.00 0.72 3.55 1.80
DF Unemployment Gap −1.75 5.52 2.41 0.34 2.73 1.84 0.58 3.46 1.75
DF GDP Growth −1.78 5.57 2.43 0.38 2.70 1.82 0.57 3.45 1.75
DF Growth Gap −1.70 5.46 2.39 0.39 2.72 1.84 0.50 3.44 1.74
DF Unemployment Rate −1.71 5.40 2.36 0.08 2.92 1.97 0.59 3.53 1.79
VAR ALL −2.22 5.29 2.32 0.47 2.74 1.84 −0.19 3.62 1.83
PC Output Gap −2.39 5.19 2.27 −1.05 2.91 1.96 −0.42 3.63 1.84
PC Unemployment Gap −2.32 5.26 2.30 −0.69 2.73 1.84 −0.34 3.62 1.83
PC GDP Growth −2.41 5.11 2.24 −1.15 2.93 1.98 −0.58 3.65 1.85
PC Growth Gap −2.27 5.10 2.23 −1.04 2.96 2.00 −0.32 3.65 1.85
PC Unemployment Rate −2.38 5.25 2.30 −0.78 3.06 2.07 −0.58 3.67 1.86

Notes: The table reports the mean forecasting error (MFE), root mean squared forecasting error (RMSFE), and relative RMSFE compared to the AO
forecast for recursive real-time out-of-sample forecasts for US PCE inflation. The in-sample data start in 1947Q2 in all reported results. Significance
for the relative results (***p < 0.01, **p < 0.05, *p < 0.1) is only indicated for improvements over the benchmark. Bolded values of MFEs indicate
failure to reject the null hypothesis of unbiasedness at the 10% significance level (p > 0.1).
utput gap to predict the bias and correct each of the
oint forecasts such that10

tπ
BC
i,t+4 = Etπi,t+4 + Etei,t+4. (13)

ias correction fails to maintain unbiasedness on the full
ample but does unbias many of the forecasts for the
ubsample periods. The reasoning mirrors the original
ias results. The rise and fall of inflation in the early
art of the sample was difficult to predict. The persistent
ositive bias in the latter sample is correctable. How-
ver, the correction comes at the cost of a near universal
oubling of RMSFE. Therefore, although the later bias-
orrected forecasts are indeed unbiased, they are inaccu-
ate, which illustrates the issue shown in Section 2.1 with
ias correction in practice.

10 Similar results are obtained for each of the real activity measures
we consider, which can be seen in Table 3 in the next section
by looking at the bias-corrected optimal-weights forecast results or
bias-corrected equal-weights forecast results.
10
5.2.1. Combined forecast results
We turn now to combinations of the 17 forecasts. We

compare conditionally optimal weights (COW), condition-
ally optimal weights with shrinkage (COWS), predicted
bias weights (PBW), and predicted exponential weights
(PEW) to combine the individual forecasts. We also test
the outcome when we select the forecast with the lowest
expected bias in each period, which is equivalent to a
PEW forecast with γ → ∞. This forecast removes the
hedging benefit of combining forecasts and tests whether
our bias predictions truly provide useful forecasts period-
by-period. We apply shrinkage to the estimated weights
by taking a linear combination of the estimated variance–
covariance matrices and an identity matrix with a weight
equal to one-half, which shrinks towards equal weights.11

11 The inclusion of shrinkage is important for the full-sample re-
sults, as the volatility of forecast errors in the 1970s and early
1980s introduces significant instability into the variance–covariance
estimates, leading to very poor forecasts. For the post-1983 sample,
when inflation is more stable, small or no shrinkage can produce
superior forecasts to the reported results in many instances. For
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or the PEW specification, we set γ = 5, which was
etermined by searching over whole number values of γ

o minimize the MSFE in a pre-sample (1967Q1–1969Q4)
eriod.
We compare the conditionally combined forecasts to

ive different combined benchmark forecasts. The first
s the equal-weights forecast. The second is the clas-
ic unconditional optimal-weights forecast with shrinkage
OWS) and without shrinkage (OW). The third is the bias-
orrected equal-weights forecast (BC-EW). The fourth is
he bias-corrected optimal-weights forecast with shrink-
ge (BC-OWS). The latter two strategies use equal weights
nd classical optimal weights, respectively, to combine
he individual bias-corrected forecasts. The same bias pre-
ictions that we use to construct conditionally optimal
eights are used to bias-correct the individual forecasts.
e also apply the same shrinkage method to the optimal
eights as we used for the conditional weights to create

air comparisons across all forecasts.
Table 3 shows the combined forecast results for four-

uarter-ahead real-time forecasts of US PCE inflation. We
eport results grouped by the predictor used in Eq. (12)
o forecast the bias. When comparing the bias-corrected
ombinations to the conditionally optimal and forward-
ooking combinations, distinct patterns emerge with re-
pect to bias (MFE) and forecast accuracy (RMSFE). The
onditionally optimal strategy produces unbiased fore-
asts over the full sample, while bias-corrected combi-
ations remain biased. In the subsamples, the condition-
lly optimal strategies are more likely to be unbiased
han their bias-corrected counterparts. When both are
iased, conditionally optimal strategies produce smaller
iases on average. The COW and COWS strategies, in
articular, stand out in this regard by being unbiased
n nearly all cases considered. Similarly, the condition-
lly optimal strategies produce more accurate forecasts
han bias-corrected optimally combined forecasts. Not a
ingle bias-corrected combined forecast significantly out-
erforms an equal-weights forecast in any of the sam-
les tested, and in only two of the 15 considered cases
oes it show a qualitative improvement, i.e., a lower but
tatistically insignificant result.
The disparity in the effectiveness between the COW(S)

orecasts and bias-corrected forecasts is explained by the
ifferent way the bias predictions are used. The COW(S)
trategies primarily exploit the relative ranking of the
orecasts implied by the predicted biases, whereas bias
orrection relies on the accuracy of the actual point fore-
ast of the bias. This insight underlies the intuition of The-
rem 2 in Section 2.1. Bias correction can introduce more
oise into the forecasts than the actual bias generates,
hich results in significantly worse forecasts. Leaving the
nderlying forecasts unchanged and using the predicted
ias to correct weights, however, provides a robust way
o use this information when forecasting.

The PEW forecast in particular illustrates the role that
ias prediction plays in aiding combination weights. The

example, if the out-of-sample period from 1990–2018 is analyzed, then
the relative MSFE of COW using the output gap to forecast the bias is
0.94 compared to the AO forecast of 0.96.
11
weights, in this case, do not shrink toward equal weights
but rather increase toward the forecast with the lowest
expected squared error. Therefore, in each period, we rely
on the individual bias predictions to identify the best fore-
casts. The forecast performance of this strategy is more
varied than the performance of strategies that rely more
on averaging, but also yields some of the best forecasts.

The PEW forecast with γ → ∞ pushes bias prediction
to its limit. This approach removes the hedging advantage
of a combined forecast and demonstrates how forward-
looking bias prediction actually drives improvements in
forecast accuracy.12 We find that choosing the expected
best model in each period leads to reductions in the
relative RMSFE compared to equal weights in a majority
of the out-of-sample forecast experiments. It also leads
to a reduction in bias compared to the combined forecast
benchmarks in most cases.

Although the overall gains in forecast accuracy of con-
ditionally optimal weights and the combined strategies
are small, the timing of the gains is economically rele-
vant. In online Appendix A2.2, we show that the largest
improvements in forecast accuracy occur around US re-
cessions, when it is arguably most important to make
accurate forecasts.

5.3. Robustness

Comparisons of combined forecast strategies face an
external validity problem because the results are sensitive
to the set of forecast models considered for a combination.
This concern is particularly acute when comparing an
optimal combination strategy to an equal-weights fore-
cast. An equal-weights forecast has no mechanisms to
filter out obviously poor forecasts, which makes it easy
to construct a straw man equal-weights forecast by in-
cluding poorly performing forecasts that a more sophis-
ticated model combination strategy can easily disregard
and which an actual forecaster would not consider.

To address this issue, we study a type of value-at-
risk calculation for combined forecasts by varying the
underlying forecasts that we combine. We select the 12
best individual models found in Table 2. We then choose
n models at a time to form every unique combination
of the models for n = 2, 3, . . . , 12, which provides
us with 4083 unique sets of forecast models to com-
bine.13 We conduct a real-time out-of-sample forecast
exercise using the full sample (1970–2018) comparing the
RMSFE obtained from all 4083 sets combined using the
OWS, COWS, and PEW specifications to an equal-weights

12 This case is of particular interest because Timmermann (2006)
notes that choosing a single model in every period typically results
in poor out-of-sample forecast accuracy. In online Appendix A2.2.2,
we offer an in-depth exploration of backward- versus forward-looking
forecasts, showing why active prediction trumps using a static estimate
of the bias.
13 The number of distinct combinations of the 12 models for each n
is as follows: n = 2 → 66 sets, n = 3 → 220 sets, n = 4 → 495 sets,
n = 5 → 792 sets, n = 6 → 924 sets, n = 7 → 792 sets, n = 8 →

495 sets, n = 9 → 220 sets, n = 10 → 66 sets, n = 11 → 12 sets,
and n = 12 → 1 set.
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Table 3
Combined and benchmark real-time forecasts of US inflation.
Benchmarks Horizon: Four quarters

Full Sample: 1970Q1–2018Q1 Subsample: 1983Q1–2007Q3 Subsample: 2007Q4–2018Q1

MFE RMSFE Rel. to EW MFE RMSFE Rel. to EW MFE RMSFE Rel. to EW

AO 0.06 2.29 0.94 0.02 1.48 0.95 0.06 1.97 0.92∗

Equal Weights (EW) −0.04 2.42 1.00 0.80 1.57 1.00 1.08 2.14 1.00
Optimal Weights (OW) −1.35 6.07 2.50 −0.87 2.46 1.57 −0.93 2.49 1.16
Optimal Weights with
Shrinkage (OWS)

0.50 2.39 0.99 0.19 1.49 0.95 0.07 2.09 0.97

Output Gap Bias Prediction

Bias-Corrected EW 1.30 2.84 1.17 2.27 3.01 1.92 1.42 2.48 1.16
Bias-Corrected OWS 0.55 2.60 1.08 1.12 2.28 1.45 0.43 2.25 1.05

Conditionally Optimal Weights
(COW)

0.29 3.31 1.37 0.12 2.01 1.28 0.12 1.96 0.92∗

Conditionally Optimal Weights
with Shrinkage (COWS)

−0.23 2.22 0.92∗ 0.05 1.58 1.01 0.01 2.10 0.98

Predicted Bias Weights (PBW) −0.06 2.15 0.98∗ 0.72 1.67 0.95∗∗∗ 0.72 2.05 0.96
Predicted Exponential Weights
(PEW)

−0.02 2.36 0.89∗∗ 0.29 1.42 0.91∗∗ 0.74 2.01 0.94∗∗∗

Best Predicted Model −0.07 2.19 0.90∗∗∗ 0.27 1.54 0.98 0.22 1.99 0.93

Unemployment Gap Bias
Prediction

Bias-Corrected EW 1.29 2.79 1.15 2.22 2.66 1.70 1.42 2.48 1.16
Bias-Corrected OWS 0.66 2.88 1.19 1.51 2.28 1.45 0.59 2.19 1.02

Conditionally Optimal Weights −0.64 4.22 1.74 −0.36 2.20 1.40 −0.20 2.33 1.09
Conditionally Optimal Weights
with Shrinkage

−0.40 2.36 0.97 0.21 1.59 1.01 0.34 2.05 0.96

Predicted Bias Weights −0.18 2.38 0.98 0.99 1.79 1.02 1.32 2.21 1.03
Predicted Exponential Weights 0.35 2.35 0.97 0.53 1.59 1.01 1.08 2.12 0.99

Best Predicted Model 0.50 2.43 1.00 0.51 1.67 1.07 1.65 2.45 1.14

GDP Growth Bias Prediction

Bias-Corrected EW 1.20 2.58 1.07 2.07 2.54 1.62 1.37 2.33 1.09
Bias-Corrected OWS 0.52 2.37 0.98 1.06 1.93 1.23 0.42 2.10 0.98

Conditionally Optimal Weights −0.14 3.64 1.50 −0.06 1.98 1.26 −0.06 2.02 0.94
Conditionally Optimal Weights
with Shrinkage

−0.19 2.19 0.90∗∗ 0.11 1.47 0.94 0.37 2.02 0.94

Predicted Bias Weights −0.07 2.38 0.98∗∗∗ 0.80 1.78 1.01 1.21 2.33 1.09
Predicted Exponential Weights 0.24 2.25 0.93∗ 0.43 1.49 0.95 1.11 2.17 1.01

Best Predicted Model 0.21 2.35 0.97 0.27 1.50 0.96 1.30 2.49 1.16

GDP Growth Gap Bias
Prediction

Bias-Corrected EW 1.29 2.68 1.10 2.10 2.55 1.63 1.39 2.35 1.10
Bias-Corrected OWS 0.70 2.56 1.06 1.30 2.04 1.30 0.63 2.14 1.00

Conditionally Optimal Weights −0.46 3.78 1.56 −0.33 2.21 1.41 −0.02 2.09 0.98
Conditionally Optimal Weights
with Shrinkage

−0.22 2.25 0.93∗ 0.19 1.50 0.95 0.46 2.02 0.94

Predicted Bias Weights −0.05 2.28 0.94∗∗∗ 0.78 1.76 1.00 1.34 2.36 1.10
Predicted Exponential Weights 0.31 2.31 0.95 0.45 1.48 0.94 1.19 2.19 1.02

Best Predicted Model 0.33 2.38 0.98 0.27 1.49 0.95 1.50 2.49 1.16

Unemployment Rate Bias
Prediction

Bias-Corrected EW 1.05 2.67 1.10 2.12 2.54 1.62 1.20 2.22 1.04
Bias-Corrected OWS 0.56 2.52 1.04 1.37 2.08 1.33 0.39 2.17 1.01

Conditionally Optimal Weights −0.15 3.57 1.47 −0.26 2.06 1.32 −0.24 2.31 1.08
Conditionally Optimal Weights
with Shrinkage

−0.15 2.24 0.93∗∗ 0.15 2.24 0.93∗∗∗ 0.21 2.07 0.97

Predicted Bias Weights −0.19 2.20 0.91∗∗∗ 0.75 1.67 0.94∗∗∗ 0.96 2.06 0.96
Predicted Exponential Weights 0.38 2.37 0.98 0.52 1.55 0.99 1.06 2.11 0.98∗∗∗

Best Predicted model 0.31 2.38 0.98 0.48 1.63 1.04 0.81 2.12 0.99

Notes: The table reports the mean forecasting error (MFE), root mean squared forecasting error (RMSFE), and relative RMSFE compared to EW for
recursive real-time out-of-sample forecasts for US PCE inflation. The in-sample data start in 1947Q2 in all reported results. Significance for the
relative results (***p < 0.01, **p < 0.05, *p < 0.1) is only indicated for improvements over the benchmark. Bolded values of MFEs indicate a failure
to reject the null hypothesis of unbiasedness at the 10% significance level (p > 0.1).
12



C.G. Gibbs and A.L. Vasnev International Journal of Forecasting xxx (xxxx) xxx

f
c

f
p
R
n
d
f
f
c
f
a

m
w
T
o
f
R
w
t
o
w

Fig. 1. Forecasting tournament results for US inflation. Notes: Panels A (maximum), B (minimum), and C (median) show the maximum, minimum,
and median observed RMSFEs for conditional optimally weighted (COWS), unconditional optimally weighted (OWS), and predicted exponentially
weighted (PEW) combinations of all unique sets of n forecasts compared to the maximum, minimum, and median observed RMSFEs of equally
weighted (EW) combinations of all unique sets of n forecasts, where n = 2, . . . , 12. Panel D shows a histogram of the RMSFEs of all PEW combined
orecasts relative to the RMSFEs of an equally weighted forecast of the same unique set. Outcomes are separated by whether the set of forecasts
ontains the AO forecast.
s
t
p
a
i
n
p
w

a
i
t
e
A
s
t
t
f
i
t
t
c

orecast.14 To summarize our results for each n, we com-
ute the maximum, median, and minimum observed
MSFE for optimal combinations of all unique sets of
forecasts and compare them to the maximum, me-

ian, and minimum observed RMSFE for equally weighted
orecasts of all unique sets of n forecasts. By comparing
orecasts using the number of models combined, we can
haracterize the worst-, median, and best-case scenarios
or each strategy if a researcher chooses n forecast models
t random to combine.
Fig. 1 presents a summary of the full sample tourna-

ent results. The RMSFEs are shown relative to the equal-
eights forecast RMSFEs for combinations of n models.
he maximum relative RMSFEs observed for combinations
f n models are shown in Panel A. All three strategies per-
orm reasonably well by this metric by producing lower
MSFEs in nearly every instance compared to an equal-
eights forecast. This means that the worst possible op-
imally combined forecasts obtained for any combination
f n models result in a lower RMSFE than the worst equal-
eights forecasts of n models for all three considered

14 For COWS and PEW, we use the output gap to predict the
bias. Similar results are obtained for each of the previously studied
predictors.
13
strategies. The PEW strategy, though, is the only strategy
whose relative accuracy appears to be increasing in n.

For the minimum and median results respectively
hown in Panels B and C, we find the familiar result
hat optimal-weights strategies are usually not optimal in
ractice when compared to equal weights. The minimum
nd median OWS forecast accuracy is worse than the min-
mum and median EW accuracy. This failure though does
ot carry over to the COW strategies. Both consistently
roduce more accurate combined forecasts than equal
eights, with PEW increasing in accuracy as n increases.
The positive relationship between n and the forecast

ccuracy of the PEW forecast is significant because it
s driven by its ability to exploit time variation in PC-
ype forecasts relative to the AO forecast. We show this
xplicitly in an exercise in the online Appendix in Section
2.2.2. Increases in accuracy are the result of weights
hifting toward PC specifications during economic down-
urns. To illustrate here, Panel D in Fig. 1 presents a his-
ogram of all 4083 subsets of PEW versus equal-weights
orecasts for the same sets of models. Combinations that
nclude the AO forecast significantly outperform those
hat do not. As n increases, the number of combinations
hat include both the AO forecast and at least one Phillips
urve forecast increases, which generates the increasing
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elative accuracy of PEW as n increases. This figure also il-
ustrates the robustness of a simple forward-looking strat-
gy. PEW generates a lower RMSFE in 3836 of the 4083
ubsets.

. Real-time forecasting: ECB SPF

In this section, we investigate the usefulness of con-
itionally optimal strategies to combine the individual
U harmonized inflation forecasts from the ECB Survey
f Professional Forecasters. We pivot to Europe but con-
inue to use inflation to show that our results are not
nique to US inflation and that our approach is applicable
hen combining large numbers of forecasts. The sur-
ey includes 106 individual forecasters. For consistency,
e again consider one-year-ahead forecasts, but similar
esults were obtained at other horizons. Real-time data
or inflation begin in 2001Q2, and we consider forecasts
hrough 2018Q1. We use the same real-time forecasting
rocedure here as in Section 5 and compare the forecasts
ith a target series composed of second-release vintages.
It remains true in this environment that simple aggre-

ations of survey forecasts, such as the mean or median
f forecasts, are typically difficult to beat Genre et al.
2013) despite persistent biases in the individual fore-
asts (Capistrán & Timmermann, 2009). The combination
f survey forecasts is also complicated by the fact that
hese surveys usually produce an unbalanced panel data
et. This means that optimal strategies that rely on consis-
ent estimates of the variance–covariance of past forecast
rrors are often not feasible without excluding some of
he forecasts or imputing observations. Conditionally op-
imal strategies are particularly advantageous when there
s an unbalanced panel because, as we have seen, using
orward-looking bias estimates alone and ignoring the
ariance–covariance of the past forecasts still offers a
oute to improve the combined forecast accuracy.

Since it is unknown how each participant arrives at
is or her forecast, we do not attempt to add a predictor
o create a forecast of the bias. Instead, we use a sim-
le AR(1) process to capture any serial dependency in
he participants’ forecast errors. Bias estimates are then
onstructed iteratively using the AR(1) estimates of the
bserved error for each forecaster.15 Due to the miss-

ing survey responses, we use the element-by-element
method of Matsypura et al. (2018) to estimate the neces-
sary variance–covariance matrices. We find the estimates
to be highly erratic, so we apply a large shrinkage value
of α = 0.1. However, we leave the expected bias portion
of the conditionally optimal weights unshrunk such that

w∗

COWS(IT ) =
(αΣ0 + (1 − α)[Σ̃ξ ] + b̂T b̂

′

T )
−1ι

ι′(αΣ0 + (1 − α)[Σ̃ξ ] + b̂T b̂
′

T )−1ι
. (14)

e omit forecasters for whom we do not observe suffi-
ient past forecasts to estimate forecast bias. Because of
hese omissions, we also test a PEW forecast that uses all

15 We estimated the AR(1) parameters by maximum likelihood using
the Kalman filter. We used filtered estimates to fill in missing values
when forecasters have missing observations. In online Appendix A3,
we show there is substantial autocorrelation in the forecast errors.
14
available forecasts. To accomplish this, we assume that all
forecasts without sufficient data have a bias equal to the
mean bias for all forecasters observed from the previous
year. We assume that the shrinkage parameter is the same
as in the US exercise (γ = 5). We compare the conditional
forecast combinations to an equally weighted forecast,
the median forecast, the bias-correction strategy of Issler
and Lima (2009), and the bias-corrected equal-weights
forecast, which uses the AR(1) bias predictions to correct
individual forecasts before combining. Issler and Lima’s
approach is identical to our bias-corrected equal-weights
forecast except that a nonparametric method is used to
estimate a fixed bias for each forecast, which is described
in online Appendix A3. Their approach is an interesting
benchmark to consider because they show it provides an
optimal forecast if the data are stationary and the biases
are fixed.

Table 4 shows the out-of-sample results. All of the
combined forecasts with the exception of BC-IL are unbi-
ased. The COWS forecast provides a statistically significant
4% improvement over equal weights.16 The PEW forecast
also returns a qualitative improvement of approximately
1.5%. The bias-corrected combinations fail to improve on
equal weights or the median forecast.

To analyze the robustness of this result, we construct
subsamples of forecasts by randomly selecting 40 of the
106 surveyed forecasters with replacement and combin-
ing their forecasts using COWS, PEW, or BC-IL.17 Fig. 2
shows the distribution of real-time relative RMSFEs for
300 draws of 40 forecasters evaluated on the full out-
of-sample period. The majority of the COWS and PEW
combined forecasts outperform an equal-weights forecast.
The opposite is true of the BC-IL forecasts.

7. Real-time forecasting: International macroeconomic
data

For the final exercise, we conduct a real-time recursive
out-of-sample forecast comparison using 25 macroeco-
nomic time series to illustrate the tradeoff between bias
correction and forecast accuracy highlighted by Theo-
rems 2 and 3 in Section 2. In particular, the accuracy of
the conditional bias forecast affects whether one should
bias-correct or conditionally optimally combine the fore-
casts. When the noise in the conditional bias outweighs
the signal, conditionally optimal weights produce com-
bined forecasts with a lower mean squared error than
bias-corrected combined forecasts.

We forecast real-time data from the Organization for
Economic Cooperation and Development for the US, Ca-
nada, the United Kingdom, Australia, and New Zealand
comprising inflation (GDP deflator), GDP growth, con-
sumption growth, and investment growth. In addition, we

16 In the online Appendix, in Figure A9, we use the COW forecast
and the equal-weights forecast against the target inflation series to
illustrate how the forecasts differ.
17 Because survey participants do not respond in every quarter and
some participants join later in the sample, the number of individual
forecasts combined varies quarter-by-quarter. Therefore, despite select-
ing 40 survey participants for each forecasting exercise, fewer than 20
forecasts are combined in each quarter in most cases.
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Table 4
Combined forecasts of EU harmonized inflation.
Simple combinations Horizon: Four quarters

Sample: 2001Q2–2018Q1

MFE RMSFE Rel. RMSFE

Equal weights (EW) −0.06 0.84 1.00
Median −0.07 0.84 1.00

Bias-corrected combinations

BC-EW −0.33 1.04 1.23
BC-IL 0.35 0.88 1.04

Conditional combinations

COW −0.00 0.81 0.96∗

PEW −0.05 0.83 0.99

Notes: The table reports the mean forecasting error (MFE), root mean squared forecasting error (RMSFE),
and relative RMSFE compared to EW for recursive real-time out-of-sample forecasts for EU harmonized
inflation constructed using the ECB’s SPF. Significance for the relative results (***p < 0.01, **p < 0.05,
*p < 0.1) is only indicated for improvements over the benchmark. Bolded values of MFEs indicate a
failure to reject the null hypothesis of unbiasedness at the 10% significance level (p > 0.1).
Fig. 2. Distribution of combined four-quarter-ahead forecast results for EU harmonized inflation. Notes: Each observation represents the full-sample
eal-time RMSFE of a combined forecast of 40 randomly selected participants of the ECB’s Survey of Professional Forecasters relative to the equally
eighted forecasts of those same 40 selected forecasters.
upplement these data with data on 10-year government
ond interest rates obtained from the St. Louis Federal
eserve’s Economic Database. We use comparable data
or each country from 1980Q2 to 2017Q2 with real-time
ata starting in the first quarter of the year 2000. We
ollow the same procedure for real-time forecasting in
his exercise as outlined in Section 5.1. We forecast each
f these series at a four-quarter horizon using 12 simple
orecast specifications: four univariate ARMA models, four
irect forecasts, and four bivariate VARs.18
The simple forecasting models we consider produce

arying degrees of bias as measured by MFEs across the
ifferent data series. For example, all the models assume
hat the time series are stationary, which is a reasonable
ssumption ex ante but problematic ex post, as both in-
erest rates and inflation experienced significant declines
rom the 1980s to the present in all of the considered
ountries. This results in out-of-sample forecasts that are

18 The four univariate models are the AO, AR(1), ARMA(1,1), and
AR(4). For each variable, we use the four other macroaggregates as
the predictors in the DF and VAR specifications. We adopt the same
two-lag specification as used in the previous exercises.
15
persistently positively biased for these variables. In con-
trast, real GDP growth, real consumption growth, and real
investment growth are mostly stationary series, and the
considered forecasts have little to no discernible bias. Fig-
ure A11 in online Appendix A4 plots the data against the
forecasts to provide a visualization of different forecast
biases.

To quantify the bias here, we pool the data by type, τ
(e.g., inflation, interest rates), and estimate a model that
nests Eq. (12) for predicting the bias:

eτ
i,j,t+4 = ci + µj + βxj,t + Γi(xj,t ) + ϵi,j,t+4 (15)

where eτ
i,j,t+4 is the forecast error of model i ∈ {1, 2, . . . ,

12} from country j’s data, µj is a country fixed effect,
xj,t is a real activity measure, and Γi(xj,t ) is a full set of
interaction and dummy variables that indicate the differ-
ence between ARMA, VAR, and direct forecasts. We use
real GDP growth to predict the bias for inflation, interest
rates, consumption growth, and investment growth. We
use consumption growth to predict real GDP growth. The
results are shown in Table 5.

From these regressions, we see that there are vary-
ing amounts of predictable information in the forecast
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Table 5
Bias prediction regressions for international data.
Variables Forecast errors Forecast errors Forecast errors Forecast errors Forecast errors

Inflation Interest rates RGDP Growth Cons. Growth Inv. Growth

Constant −0.712*** −3.409*** −0.271** −0.452*** −1.144**
(0.123) (0.042) (0.111) (0.095) (0.447)

RGDP (xj,t ) 0.027 0.008 – 0.074*** 0.161*
(0.024) (0.009) – (0.019) (0.090)

Consumption (xj,t ) – – −0.048** – –
– – (0.023) – –

RGDP × ARMA 0.006 −0.026** – −0.036 −0.115
(0.034) (0.012) – (0.027) (0.126)

Consumption × ARMA – – −0.050 – –
– – (0.032) – –

RGDP × VAR −0.006 −0.039*** – −0.015 −0.015
(0.034) (0.012) – (0.027) (0.126)

Consumption × VAR – – −0.022 – –
– – (0.032) – –

ARMA 0.272** 3.102*** 0.506*** 0.364*** 1.134**
(0.133) (0.047) (0.127) (0.105) (0.489)

VAR 0.322** 3.182*** 0.054 0.120 0.060
(0.133) (0.047) (0.127) (0.105) (0.489)

Observations 5688 5052 5088 5160 5160
R-squared 0.010 0.691 0.014 0.018 0.005
Country FE Yes Yes Yes Yes Yes

***p < 0.01, **p < 0.05, *p < 0.1

Notes: OLS regression estimates of pooled forecast errors from the 12 proposed models for out-of-sample forecasts of data from the US, Canada, the
United Kingdom, Australia, and New Zealand. Real GDP is the predictor for the forecast errors of inflation, the interest rate, consumption growth,
and investment growth. Consumption is the predictor used in the real GDP growth (RGDP) forecast error regression. ‘VAR’ and ‘ARMA’ are indicator
variables that take a value of one if the forecast error is produced by that model type and take a value of zero otherwise.
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errors across the five types of data. The interest rate
forecast errors are large and contain the most predictable
information with an R-squared of nearly 0.7. The interest
rate forecasts also show a high degree of forecast dis-
agreement among the different types of forecasts that
produced the errors. The investment growth forecasts
show nearly the opposite relationship. The regression es-
timates in this case indicate minimal differences among
the three types of forecasts, and the R-squared is just
0.005. The remaining three types of data fall between
these two cases.

Fig. 3 illustrates the relationship between the pre-
ictability of the bias and combined forecast accuracy
or bias-corrected and COW combined forecasts. The con-
itional bias is calculated using Eq. (12) with the real
ctivity measures used in Eq. (15) for these forecasts. Each
oint on the graph shows the relative MSFE for the full
ut-of-sample period of a combination of two individual
orecast types plotted against a measure of the ex post
ias of the individual forecasts. We quantify the bias of
he underlying forecasts as

1
2N

(
N∑

t=1

(
eτ
i,j,t+4 + eτ

k,j,t+4

))⏐⏐⏐⏐⏐ ,
where i ̸= k and i, k ∈ {1, 2, . . . , 12} for each country j.
o allow data from different countries to be pooled, we
lso divide this measure by its standard deviation for all
orecasts i, k ∈ {1, 2, . . . , 12} of data of type τ for each
ountry j. There are 66 unique combinations of two out
f the 12 models for the five different countries, which
ields the 330 data points for each combined forecast of

ach type of data shown in the figure.

16
Fig. 3 shows that there is a clear negative relationship
etween the relative MSFE and the bias of the individual
orecasts for bias-corrected optimally combined forecasts
ith shrinkage (BC-OWS).19 When the forecasts are un-
iased, bias correction and the optimal combination of
he forecasts results in a larger MSFE than combining
he forecasts with equal weights. However, as the ab-
olute size of the bias grows, so does the accuracy of
he bias-correction strategy. The COW forecasts shown in
lue, on the other hand, have either no relationship or a
lightly negative relationship with the bias of the under-
ying forecasts. As predicted by Theorem 2 in Section 2,
he conditionally optimal-weights forecasts are more ro-
ust than bias-corrected optimal-weights forecasts in this
espect. COW forecasts do not experience the same loss
n forecast accuracy relative to equal weights when the
iases are small or medium sized. COW provides a ro-
ust forecast that improves upon equal-weights forecasts
n the overwhelming majority of cases tested, spanning
ifferent types of data from different countries.

. Conclusion

We showed that when there is predictable informa-
ion in forecast errors, a combined forecast should be
onstructed to minimize a conditional expected loss func-
ion. We proved that forecast combinations constructed
n this way improve upon unconditional combinations
ommonly used in the literature and that the improve-
ents are greater when more information becomes

19 The shrinkage employed here follows the same specification used
in Section 5.2.1 for US inflation.
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Fig. 3. Tradeoff between accuracy and bias for real-time forecasts of international data. Notes: Each dot represents the full sample (2000–2018)
four-quarter-ahead MSFE for forecasts of data from one of the following countries: the US, Canada, the United Kingdom, Australia, or New Zealand.
Bias-corrected optimally combined forecasts with shrinkage (BC-OWS) and conditionally optimal-weights forecasts with shrinkage (COWS) results
are shown relative to the MSFE of an equal-weights forecast, which are plotted against a measure of the absolute forecast bias of the underlying
forecasts that are combined. The absolute forecast bias measure is defined in the text. The line represents OLS regressions of relative MSFEs on the
absolute forecast bias. The shaded area shows the 95% confidence intervals.
available. Our theoretical findings support forward-looking
approaches to combining forecasts, where forecasts are
weighted by their expected performance rather than their
past performance. Our empirical results represent a proof
of concept that forward-looking approaches work in prac-
tice.
17
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