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Abstract

This paper studies the improvement in empirical fit of dynamic stochastic gen-
eral equilibrium (DSGE) models that assume adaptive learning in lieu of rational
expectations (RE). The literature finds that estimated DSGE models with adaptive
learning generate near universal improvements in fit, while inference on structural
parameters is mostly unchanged. Improvements are attributed to the increased
persistence generated by backward-looking expectations. We show, however, that
improvements often result from altered cross-equation restrictions and not addi-
tional persistence assumptions. Nested comparisons of Euler-equation and infinite-
horizon adaptive learning both significantly improve upon RE but only the latter’s
improvements are due to expectation formation. Bounded rationality assumptions
offer an intuitive way to improve both in-sample and out-of-sample DSGE model
fit. But our results suggest that learning models best-capture persistent deviation
in beliefs from fundamentals rather than temporary deviations at business cycle
frequencies.

JEL Classifications: E31; E32; D84; D83; C13

Key Words: Expectations; Adaptive learning; DSGE; Estimation.

∗Gaus: Moody’s Analytics (e-mail: egaus@gmail.com). Declarations of interest: none.
†Gibbs: University of Sydney. (e-mail: cgg1127@gmail.com). Declarations of interest: none. We

would like to thank for comments and discussion Mariano Kulish, Bruce Preston, Stefano Eusepi, George
Evans, Bruce McGough. Peter Ireland, James Morley, and Glenn Otto; Benaya Lie for research assis-
tant support; seminar participants at the University of Queensland, Monash University, University of
Melbourne, SUNY Binghamton, Fordham University, University of Birmingham, and the University of
Sydney. We would also like to thank conference participants and organizers at the 2016 Expectations
in Dynamic Macro Models Conference, the Society for Nonlinear Dynamics and Econometrics 2017
meetings, and the Society for Economic Measurement 2017 meetings. All errors are the fault of the
authors.

1



1 Introduction

Dynamic stochastic general equilibrium (DSGE) models often struggle to endogenously

reproduce the persistence observed in actual macroeconomic data. This has led many re-

searchers to consider additional frictions, preference assumptions, or ad hoc adjustments

within the standard rational expectations (RE) framework to increase persistence.1 How-

ever, since evidence from forecasting surveys (see Coibion and Gorodnichenko 2015) and

laboratory experiments (see Hommes 2013) often suggest deviations from rationality,

many researchers have sought to generate this persistence directly through expectations

by deviating from RE. For example, Milani (2006, 2007), Eusepi and Preston (2011),

Del Negro and Eusepi (2011), Slobodyan and Wouters (2012a,b), Rychalovska (2016),

Ormeño and Molnár (2015), Eusepi and Preston (2018), and Cole and Milani (2019) all

consider adaptive learning with a constant gain and find a number of desirable properties

including near universal improvements in model in-sample fit, the ability to capture sur-

vey forecasts of macroeconomic aggregates (Milani 2011; Ormeño and Molnár 2015; Cole

and Milani 2019), or a lessened reliance in some cases on habit persistence or indexation

in order to generate persistence (Milani 2006, 2007).

In this paper, we investigate the exact mechanisms that generate improvements in in-

sample fit in estimated DSGE models using one of the most frequently studied bounded

rationality modeling strategy: adaptive learning with a constant gain, also known as

constant gain learning (CGL).2 Specifically, we investigate whether improvements in fit

in these models are always evidence for the theory of adaptive learning (belief updating)

or if they are a consequence of other misspecification. One reason to think that it may

be the latter is a striking consistency among the estimation results of many boundedly

rational DSGE comparisons to RE in the literature with similarities that point towards

misspecification rather than belief updating as the root cause. In particular, we note

three stylized facts that emerge from these estimation studies:

1. Model fit significantly improves under adaptive learning for almost any specification

1The lack of persistence generated by DSGE models under RE is well-known. These modifications
include ad hoc corrections such as adding lags of the endogenous variables to the structural equations
(Galı and Gertler 1999 and Ireland (2004)), changes to preference such as habit persistence (Fuhrer
2000), changes to inflation setting by firm through inflation indexation (Cogley and Sbordone 2008), or
adding information problems such as rule-of-thumb behavior (Amato and Laubach 2003), or rational
inattention/sticky information (Mankiw and Reis 2002; Ball et al. 2005). Armed with subset of these
modifications, Del Negro et al. (2007) declare that the New Keynesian model fits the data well enough
to be used for policy evaluation.

2Though we have confined this paper to DSGE models and constant gain learning, other modeling
frameworks might exhibit the same patterns. For example, Chow (1989) examines present value models
and rejects rational expectations in favor of adaptive expectations.
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of expectations considered.

2. The inference on the structural parameters of the model is mostly unchanged com-

pared to inference under RE.

3. The gain parameters, which correspond to the persistence in expectations, are

estimated to be relatively small.

To illustrate, Table 1 reports the parameter estimates from two of the most widely

cited studies on estimated New Keynesian models with adaptive learning: Milani (2007)

and Slobodyan and Wouters (2012b). Milani investigates adaptive learning in a small

scale DSGE model, while Slobodyan and Wouters investigate learning in the medium

scale DSGE model of Smets and Wouters (2007). The table reports some key parameter

estimates from the two studies to allow a comparison between estimation results obtained

under RE to those obtained under adaptive learning. We restrict attention to the case

where the agents’ perceived law of motion takes the functional form of minimum state

variable (MSV) solution, although, similar results are often seen for other perceived law

of motion specifications.

The model under constant gain learning exhibits a significant improvement in in-

sample fit as measured by marginal log-likelihood relative to RE. Second, the difference

between the key parameters that describe monetary policy and the exogenous shocks

are small.3 In fact, nearly all of the parameters estimates under CGL remain within

the highest posterior density (HPD) interval of their RE counterparts. Finally, the gain

parameters that govern how agents update beliefs in the learning algorithm are estimated

to be relatively small.

The second stylized fact is often interpreted as evidence that persistence at a business

cycle frequency explains the observed improvement in fit because small changes in the

structural parameters are interpreted as the model fitting the data in the same way as

under RE. However, the third fact - small estimated values for the gain parameters -

complicates this interpretation. Small gain parameters such as these can imply extreme

persistence in the learning process that goes far beyond business cycle frequencies.

For example, Figure 1 shows the time path under learning of the CGL-MSV case

of Slobodyan and Wouters (2012b) for all beliefs initialized at steady state with the

exception of inflation. For inflation, we assume that in the first quarter of 1948, the

agents assume that steady state inflation rate is 0.5% higher than the actual value. As

3There is a transcription error between the working paper and published versions of Slobodyan and
Wouters (2012b), where the 5% column of the HPD intervals is reported in the mean column. This
explains the discrepancies between this table and the published version.
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Table 1: Stylized facts of estimated NK models with CGL

Slobodyan and Wouters JEDC 2012 Milani JME 2007

RE CGL-MSV Difference RE CGL - MSV Difference

Monetary policy & habits Monetary policy & habits

MP inflation 2.04 1.91 0.13* MP inflation 1.433 1.484 -0.051*
[1.75, 2.33] [1.58, 2.22 [1.06, 1.81] [1.08, 1.90]

MP output 0.09 0.13 -0.04* MP output gap 0.792 0.801 -0.009*
[0.05, 0.13] [0.07, 0.18] [0.425, 1.165] [0.433, 1.18]

MP output growth 0.22 0.19 0.03* MP smoothing 0.89 0.914 -0.024*
[0.18, 0.27] [0.15, 0.24] [0.849,0.93] [0.875, 0.947]

MP smoothing 0.81 0.84 -0.03* Habits 0.911 0.117 0.794
[0.77, 0.85] [0.80, 0.88] [0.717, 0.998] [0.006, 0.289]

Habits 0.71 0.80 -0.09
[0.64, 0.78] [0.75, 0.84]

AR parameters AR Parameters

Productivity 0.96 0.96 0.00* Demand shock 0.87 0.845 0.025*
[0.94, 0.98] [0.94, 0.99] [0.8,0.93] [0.776, 0.908]

Risk premium 0.22 0.23 -0.01* Price mark-up 0.02 0.854 -0.834
[0.08, 0.36] [0.13, 0.32] [0.0005, 0.07] [0.778, 0.93]

Gov. spending 0.98 0.96 0.02*
[0.96, 0.99] [0.96, 0.99]

Investment 0.71 0.45 0.26
[0.62, 0.81] [0.33, 0.56]

MP shock 0.15 0.15 0.00*
[0.04, 0.24] [0.05, 0.26]

Price mark-up 0.89 0.93 -0.04*
[0.81. 0.97] [0.88, 0.97]

Wage mark-up 0.97 0.97 0.00*
[0.95, 0.99] [0.95, 0.99]

St. Dev. Shocks St. Dev Shocks

Productivity 0.46 0.47 -0.01* MP Shock 0.933 0.86 0.073*
[0.41, 0.51] [0.42, 0.52] [0.84, 1.04] [0.777, 0.953]

Risk premium 0.24 0.25 -0.01* Demand shock 1.067 1.67 -0.603
[0.20, 0.28] [0.22, 0.28] [0.89, 1.22] [1.47, 1.91]

Gov. spending 0.53 0.53 0.00* Price mark-up 1.146 1.15 -0.004*
[0.48, 0.58] [0.48, 0.58] [1.027, 1.27] [1.02, 1.31]

Investment 0.45 0.61 -0.16
[0.37, 0.53] [0.53, 0.68]

MP shock 0.24 0.24 0.00*
[0.22, 0.27] [0.21, 0.26

Price mark-up 0.14 0.14 0.00*
[0.11, 0.17] [0.12, 0.16]

Wage mark-up 0.24 0.23 0.01*
[0.21, 0.28] [0.20, 0.26]

Gains Gains
- 0.017 0.018

[0.006,0.021] [0.0133,0.0231]
Marginal Likelihood Marginal Likelihood

-922.75 -910.97 -765.45 -759.08

Notes: This table only reports a subset of the parameter estimates. Similar patterns are observed for the remaining
parameters. The columns labeled ”Difference” show the simple difference between the RE and CGL parameter estimates
with asterisks denoting when the changes fall inside of the 95% HPD intervals of the RE estimate. The published version
of Slobodyan and Wouters (2012b) does not report the HPD intervals for some estimates. We obtained these values from
a working paper version dated 2009.
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Figure 1: Small Gain Example
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Notes: Return to steady state under constant gain learning in the Smets and Wouters
model using Slobodyan and Wouters (2012b) posterior mode estimates (Column 2 in
Figure 1).

the figure shows, the effects of such beliefs would still be felt today at the estimated value

of the gain.4 Chevillon and Mavroeidis (2017) recently highlight this feature of CGL to

show that when gains are small, relative to sample size, that learning may actually

generate long memory in the endogenous variables. This points to CGL as potentially

explaining long run persistent expectation driven movements in macroeconomic data but

not movements at typical business cycle frequencies.5

We show that one explanation for the three stylized facts lies in the separation of

the estimation of structural parameters from the estimation of beliefs in CGL models.

4For the simulation, we set the variance-covariance matrix of the least squares algorithm to that of
the relevant variances of each variable obtained under RE and we hold these values fixed.

5It is well-known that the choice of initial beliefs can have a significant impact on estimation results.
Both Berardi and Galimberti (2017) and Slobodyan and Wouters (2012b) explore the effect of initial
beliefs on model fit but neither study makes the connection between these effects and the overall role or
lack thereof of time-variation in expectations for small gains.

5



Under RE, the structure of the model and beliefs are tightly linked. These linkages imply

nonlinear cross-equation restrictions that enforce, for example, sign and zero restrictions

on the model’s predictions of the covariance and autocovariances of the observable data.

Relaxing RE by assuming that beliefs are not tied to the structure of the model can

significantly alter these restrictions allowing the model to better fit the data without

increasing the number of freely estimated parameters or introducing new mechanisms

to generate persistence. Furthermore, we show that this is a property of any linearized

DSGE model.

To illustrate the point, we estimate a New Keynesian model following Ireland (2004)

under five different expectations assumptions: RE, two common variants of CGL, and

a restricted case of each learning model that prevents any time-variation in expecta-

tions, which we call fixed beliefs (FB). The fixed belief cases allow us to relax the RE

assumption without introducing new freely estimated parameters or persistence through

expectation. The two variants of CGL are Euler-equation CGL (EE-CGL) following

Evans and Honkapohja (2001) and infinite-horizon CGL (IH-CGL) following Preston

(2005). We perfectly nest all five expectational assumptions by using the MSV solution

of the model for the perceived law of motion under CGL and by calibrating its initial

value to that obtained from a full sample estimation of the model under RE. Therefore,

if the RE model is the true model, then all five expectation assumptions yield the same

in-sample fit and parameter estimates.

We compare the five different models’ in-sample fit, real-time out-of-sample fit, and

following McCallum (2001) by their variances and autocovariance functions. We find

that the four bounded rationality cases largely generate results consistent with the three

stylized facts. Comparing the two adaptive learning specifications to their fixed belief

counterparts, we find no significant differences between the EE-CGL and EE-FB cases.

This indicates that the relaxation of the RE restrictions alone explain the majority of

the observed improvement in fit. We also show that similar results hold in the Smets and

Wouters model. For the IH cases, however, we do find marginal increases in fit relative

to the fixed belief case, substantive additional persistence generated via agents’ beliefs,

and different autocorrelation predictions for key endogenous variables when agents are

learning, which indicates that the learning assumption materially adds to the predictions

of the model beyond relaxing the RE restrictions. Therefore, only in the IH case do we

conclude that learning makes a positive contribution towards fitting the data.

There are four takeaways from this exercise. First, the results actually provide support

for considering bounded rationality assumptions since deviating from rationality clearly

improves in-sample and out-of-sample model fit. Second, CGL appears best suited to
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explain long run drifts in beliefs rather than persistence at a business cycle frequency.

This finding also explains why assuming simple forecasting rules as PLMs that specifi-

cally include lags of endogenous variables fit the data better. The lags needed to generate

short run persistence are explicitly assumed in this case.6 Third, our results demonstrate

that comparisons between bounded rationality strategies and RE should be done with

care. Model fit does not immediately imply evidence for a specific expectation assump-

tion. Comparisons may say more about the misspecification of the model under RE.7

Finally, it is important to stress that these conclusions are independent of issues relating

to identification. Altering of cross-equation restrictions through different expectations

assumptions changes the set of possible values a parameter may take on, which is dis-

tinct from whether the specific parameter is identifiable to the econometrician given the

information available. In the exercises we consider, all parameters of interest are identi-

fied under the RE, FB, and CGL specifications but their implied relationship to the data

through the model may differ greatly.

In the next section, we present examples of how bounded rationality strategies increase

fit by altering cross-equation restrictions. In Section 3, we introduce a parsimonious

DSGE model and explore the reduced form mappings implied under the five different

expectations assumptions. In Section 4, we estimate the model under the different ex-

pectations assumptions and compare the results along the aforementioned dimensions.

In Section 5, we explore EE-FB in a medium scale DSGE model and revisit the stylized

facts. Section 6 concludes.

2 The effect of relaxing RE

To illustrate the effect of relaxing the RE assumption in a DSGE model, consider the

following univariate example:

xt = α + βEt(xt+1) + wt (1)

where wt = ρwt−1 + εt and εt ∼ N(0, σ). The model has the parameters α, β, ρ, and

σ, which we refer to throughout the paper as the structural parameters. Under RE, the

6See, for example, Slobodyan and Wouters (2012a).
7This finding is consistent with other evidence from the DSGE-VAR literature (Cole and Milani

2019).
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model has a MSV solution of the form

xt = a + bwt (2)

wt = ρwt−1 + εt, (3)

which is characterised by the model’s reduced form parameters: a and b. The reduced

form parameters are nonlinear combinations of the underlying structural parameters,

where a = α/(1 − β) and b = 1/(1 − ρβ). In addition, the structural parameters have

restrictions imposed by theory. For example, |β| < 1 is required for determinacy and

−1 < ρ < 1 is required for stationarity.

Typically, an econometrician is interested in obtaining estimates of the structural

parameters while only observing xt. The reduced form is a state space model and es-

timates of the structural parameters and the unobserved process ωt may be obtained

using likelihood-based techniques with the Kalman filter. Identification of the individual

structural parameters under RE or learning requires calibrating some subset of parame-

ters (such as β in this case). This setup leads to the following relationships between the

reduced form parameters (a and b), which if freely estimated would reflect the underlying

correlations in the data, and the non-calibrated structural parameters of interest:

α|RE = a (1− β) (4)

ρ|RE =
b− 1

βb
(5)

From here it is clear that the structural parameters may be nonlinear combinations of the

reduced form parameters, where bounds placed on the structural parameters by theory

may limit the possible value that the reduced form parameters may take and hence the

properties of the data the structural model can replicate.

Now consider the same model under adaptive learning of the MSV solution. Under

adaptive learning, the agents take the same view point as an econometrician. The agents’

perceived law of motion for the economy is given by Equations (2) and (3), but a and b

are assumed to be unknown to the agents. Agents estimate a and b via recursive least

squares with a constant gain:

(
at

bt

)
=

(
at−1

bt−1

)
+ γR−1

t

(
1

wt

)(
(1 wt)

(
at−1

bt−1

)
− xt

)
(6)

Rt = Rt−1 + γ (w′twt −Rt−1) , (7)
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where 0 < γ < 1; a0, b0, and R0 are appropriate initial values of the recursion, and Rt is

the estimated variance-covariance matrix. Substituting these beliefs into Equation (1),

the actual law of motion for the economy is given by

xt = at−1 + bt−1wt (8)

wt = ρwt−1 + εt (9)

plus Equations (6) and (7), where at−1 = α + βat−1 and bt−1 = (βbt−1ρ+ 1). The

parameters of interest are now α, β, ρ, σ, and γ. The model again may be estimated

using likelihood based techniques just like RE.

From the econometrician’s perspective, adaptive learning allows for time-variation

in the reduced form parameters of the model, which may capture more complicated

dynamics present in the data. But it also changes the mapping from the reduced form

parameters to the key structural parameters given by Equations (4) and (5). To see how,

consider the case where no time-variation in beliefs is allowed by setting γ = 0, which

fixes at = a0 = aFB and bt = b0 = bFB to their initial values. This implies the following

relationship between the structural parameters and the reduced form

α|FB = −βaFB + a (10)

ρ|FB =
b− 1

βbFB
. (11)

Both structural parameters of interest are now linear in the reduce form parameters.

If one compares Equations (4) and (5) to (10) and (11), then conditional on aFB

and bFB being set to their RE values, the two cases are equivalent and the structural

parameters are the same. However, if these parameters are set differently, or there is

misspecification under RE so that the model does not well-capture the data, then the

fixed belief case allows both the structural parameters and the reduced form parameters

to take on different values.

For example, consider the case where xt is US inflation. Stock and Watson (2007)

show that inflation is well-describes by an IMA(1,1) process. If this process is the true

data generating process, then xt evolves as

xt = τt + εx,t

τt = τt−1 + ηt,
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where εx,t and ηt are the exogenous shocks. Here, the RE, FB, and CGL models are

all misspecified. If the econometrician allows for measurement error, then the reduced

form state space model given (2) and (3) would still nest this data generating process

with a = 0, b = 1, and ρ = 1. But these values for a, b, and ρ are infeasible under the

restrictions imposed by the RE structural models.8

In practice, the misspecification creates a tradeoff for fitting the proposed structural

models to the data between matching persistence of xt and matching the observed in-

sample variance of xt. Assuming the in-sample variance of xt is sufficiently small for

illustrative purposes, we can see how this tradeoff would work by rewriting Equations (2)

and (3) as

xt = (1− ρ)a + ρxt−1 + bεt. (12)

Under RE, the closer the estimated value of ρ is to its true value of 1, the larger is

b = 1/(1 − ρβ). Therefore, higher values of ρ allow the model to better match the

persistence at the cost of inflating the variance of the shock and vice versa.

2.1 Empirical implications in a multivariate setting

Now suppose we are interested in estimating the structural parameters of an endowment

economy with a monetary authority that adjusts the nominal interest rate in response

to changes in inflation. We can characterize inflation using the monetary policy rule and

the Fisher equation:

it = φππt + εt (13)

it = Etπt+1 + rt, (14)

where rt is the exogenous real rate of return that follows an AR(1) process, rt = θrt−1+ηt,

and εt is an i.i.d monetary policy shock. The inflation process can be written in a similar

form as (1),

πt =
1

φπ
Etπt+1 +

1

φπ
rt, (15)

8For example, using Equation (5), b = 1 implies ρ must be equal to zero.
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which implies the same reduce form for πt under RE and FB

πt = a + brt. (16)

In this case, both the interest rate and inflation are observable, which means that

regardless of the expectation assumption, the parameter φπ is pinned down by the mon-

etary policy rule (13) and the contemporaneous correlation of the interest rates and

inflation. The relationship between the remaining structural parameters and the reduced

form, however, are different. Under rational expectations, the reduced form is a = 0 and

b = 1/(φπ − θ), while under fixed beliefs it is a = aFB/φπ and b = 1+bFBθ
φπ

. For both

expectations assumptions, there is a different relationship between b and the persistence

parameter θ. Depending on how bFB is chosen and the actual correlations in the data,

b̂, the implied persistence of the two models may differ.

Figure 2 shows what happens to the range of permissible values of θ when we vary the

value of b̂, where bFB is set to an RE solution with θ = 0.9, which mimics the practice

of initializing beliefs to RE estimates from a pre-sample. For the same range of b̂, there

is a wider range of possible structural parameters under FB. The FB formulation adds

no additional persistence as would be the case under learning. But, given the same data,

the estimated persistence may be different, while other structural parameters remain the

same.

This illustrates a mechanism that may explain improvement in fit in models that

deviate from RE. The interconnectedness of structural parameters through the non-linear

cross-equation restrictions is significantly altered under non-rational expectations. As a

consequence, such models may fit data better irrespective of the economic theory which

motivates the use of the bounded rationality assumption. The fact that these changes

are nonlinear means that what appear to be small changes in the structural parameters

from the econometrician’s perspective, may imply significant changes in the model’s

predictions for the observable data, which explains why fit can improve when parameter

estimates appear to remain largely the same.

2.2 The general case

We can generalize this insight to any first-order approximated DSGE model. Consider

the linearized structural equations of a DSGE model, which we write as

11



Figure 2: Reduced Form to Structural Form Range

Notes: Parameter θ = 0.9 for the FB belief calibration. Solid line is FB, dashed line is
RE.
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yt = Γ + Ayt−1 + BIEtyt+1 + Dvt + Kεt (17)

vt = Rvt−1 + ut, (18)

where yt is a vector endogenous variables and vt is vector of autoregressive exogenous

shocks. The minimum state variable RE solution of the model takes the following form

yt = C + Fyt−1 + Qvt + Kεt. (19)

Collect the parameters of interest into the vector Θ. The RE restrictions can be sum-

marized by the mapping F : Θ→ {C,F,Q}, which governs how changes in the elements

of Θ change C, F, or Q. In general, the mapping is highly nonlinear and often has no

closed form solution. The MSV solution has a state space representation and inference

on Θ may be obtained by maximum likelihood. To this aim, let

ΘMLE = argmaxΘL(Θ|yobs, F ),

where L is the likelihood function, yobs is observable data, and F is the aforementioned

mapping.

Now consider the case of boundedly rational agents with fixed beliefs. As in the

simple example, suppose that beliefs are of the form of Equation (19), where CFB
|ΘMLE ,

FFB
|ΘMLE , and QFB

|ΘMLE are formed using the ML estimates obtained from the RE model.

Under this assumption, the data generating process for the economy takes the following

form

yt = (I−BFFB)−1(Γ + BCFB)︸ ︷︷ ︸
C

+ (I−BFFB)−1A︸ ︷︷ ︸
F

yt−1

+ (I−BFFB)−1(BQFBR + D)︸ ︷︷ ︸
Q

vt + Kεt, (20)

where Equation (19) is substituted in for IEtyt+1. Note the following regarding Equation

(20):

1. Equation (20) retains the same reduced form as Equation (19).

2. Conditioning on CFB, FFB, and QFB, Equation (20) is described by the same

structural parameters as Equation (19), which we collect in the vector Ξ.
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For the econometrician, the mapping of interest is now G : Ξ×ΘMLE → {C,F,Q}.
The question here is whether ΞMLE from Equation (20) is equal to ΘMLE from Equation

(19) and whether

max
Θ

IEL(Θ|yobs, F ) = max
Ξ

IEL∗(Ξ|yobs,G,ΘMLE).

Consider the case where the true data generating process is projected onto an unrestricted

reduced form that nests the RE solution

yt = CT + FTyt−1 + QTvt + KT εt, (21)

where in the event that Equation (19) is correctly specified, it is equivalent to the true

data generating process.

Theorem 1: Given Equation (21) and the mappings F : Θ → {C,F,Q} and G :

Ξ×ΘMLE → {C,F,Q} such that ΘMLE = argmaxΘL(Θ|yobs, F ),

a. if Θ∗ = F−1({CT ,FT ,QT}) exists and is in the feasible parameter space, i.e. satis-

fies determinacy or other theoretically imposed restrictions, then

Θ∗ = argmaxΘIEL(Θ|yobs, F ) = argmaxΞIEL∗(Ξ|yobs, G,ΘMLE)

and

max
Θ

IEL(Θ|yobs, F ) = max
Ξ

IEL∗(Ξ|yobs, G,ΘMLE)

b. if Θ∗ = F−1({CT ,FT ,QT}) does not exist or, exists but is not in the feasible pa-

rameter space, then

argmaxΘIEL(Θ|yobs, F ) 6= argmaxΞIEL∗(Ξ|yobs, G,ΘMLE)

and

max
Θ

IEL(Θ|yobs, F ) ≤ max
Ξ

IEL∗(Ξ|yobs, G,ΘMLE)

Proof. For part a, if Θ = Ξ, then by construction Equation (20) is equal to Equation
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(19), ΞMLE from Equation (20) is equal to ΘMLE from Equation (19), and

max
Θ

IEL(Θ|yobs, F ) = max
Ξ

IEL∗(Ξ|yobs,G,ΘMLE).

For part b, the non-equivalence of the maximum likelihood coefficient estimates is straight-

forward. We obtain the inequality in likelihoods by noticing that the range of mapping

F is, by construction, a subset of the range of G because F (Θ) := G(Θ,Θ).

The relaxation considered here is the starting point for most models of bounded ratio-

nality. Therefore, without adding extra structural parameters that are freely estimated

or allowing for time-varying beliefs, the model becomes less restricted, while maintaining

the same functional form, i.e. Equation (21), Equation (20), and Equation (19) continue

to nest one another. This, of course, does not imply that further modification such as

assuming time-variation in C, F, and Q as in adaptive learning will not better fit the

data, but it highlights another mechanism through which boundedly rational models may

improve in-sample fit without any time-variation in the reduced form parameters. In the

remainder of the paper, we specifically ask what degree is this mechanism is empirically

relevant.

3 Expectations and the reduced form

We consider five different assumptions for expectations that share a common reduced

form:

yt = Ct + Ftyt−1 + Qtvt + Kεt, (22)

Each assumption imposes different restrictions on Ct, Ft, and Qt. In this section, we put

forward a tractable model that allows for analytical derivation of the mapping from the

structural parameters to the reduced form so that changes implied by different expecta-

tions assumptions can be studied in detail. Besides the RE approach, we consider two

variations of adaptive learning and their respective FB counterparts.

The first adaptive learning approach we consider follows Evans and Honkapohja

(2001) by assuming Euler-equation constant gain learning.9 In EE-CGL agents are only

asked to form one-step-ahead forecasts and they ignore any implications of their forecasts

for longer horizons. The appeal of this approach is that if the chosen forecasting process

nests RE, then under well-known regularity conditions (E-stability) the agents’ beliefs

9This is also the approach most often taken in the behavioral heterogeneous expectation literature
as in Hommes (2013) and the references therein.
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will stay in the neighborhood of the RE solution. Therefore, it allows for potentially

complicated but bounded beliefs around the natural RE benchmark in a wide range of

models.

The second approach we consider is infinite-horizon learning following Preston (2005),

which asks agents to consider the implications of their beliefs on their entire decision prob-

lem. In many cases, this means solving out an agent’s decision rule, given beliefs today,

into the infinite future. The advantage of this approach is that decisions conditional on

beliefs are consistent with the micro-foundations of the model at every point in time,

which is not always true in the EE specifications. Like its EE counterpart, though, under

well-known regularity conditions beliefs under constant gain learning will depart from

those predicted under RE but in the long run tend towards the RE solution.

The two FB counterparts for the IH and EE specifications can be thought of as re-

stricted cases, where the gain parameter in the learning algorithm is set to zero and

not estimated. But it is important to distinguish these cases as standalone expectation

assumptions because algebraically they are similar to other bounded rationality assump-

tions considered in the literature. For example, when expectations are assumed to be

generated by fixed parameter VARs or other simple time series models as considered in

Cornea-Madeira et al. (2017) or Cole and Milani (2019). Therefore, the impact on fit

that these strategies have relative to RE are informative beyond MSV adaptive learning

exercises.

3.1 The model

We study a parsimonious version of the New Keynesian model proposed by Ireland (2004).

The microfoundations of the model are given in Appendix A. Following Preston (2005),
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the key equations under an unspecified expectations operator ÎEt are

xt = r̄(1− β)−1 − ωât (23)

+ÎEt

∞∑
T=t

βT−t [(1− β)(xT+1 + ωρaâT )− (iT − π̂T+1)− (ρa − 1)âT ]

πt =
1− β

1− λ1β
π̄ + ψxt − et + λ1β ÎEt

∞∑
T=t

(λ1β)T−t
(

1− λ1

λ1

πT+1 + ψxT+1 − eT+1

)
(24)

it = r̄ + π̄ + θπ(πt − π̄) + θxxt + εi,t (25)

gt = ŷt − ŷt−1 + ḡ + εz,t (26)

xt = ŷt − ωat (27)

at = ρaat−1 + εa,t (28)

et = ρeet−1 + εe,t, (29)

where xt is the output gap, πt is inflation, it is the nominal interest rate, gt is the growth

rate of output, yt is the stochastically detrended level of output, at is a preference shock,

et is a cost push shock, εi,t is a monetary policy shock, and εz,t is the detrended TFP

shock. The individual variables are in log terms with their log steady state values written

out explicitly such that at steady state xt = x̄ = 0, πt = π̄, it = r̄ + π̄, and gt = ḡ.

We choose this model because it has no internal propagation mechanisms other than

expectations. In fact, the minimum state variable RE solution does not depend on any

lagged endogenous variables. This has the added benefit of allowing us to estimate the

model without a projection facility, which is usually required to keep expectations from

becoming explosive during numerical optimization of the likelihood function. Gaus and

Ramamurthy (2012) note that the choice of projection facility can have a significant effect

on estimation outcomes, which may complicate a comparison with RE. In addition, the

determinacy and E-stability conditions of the model perfectly coincide in all cases.10

This allows us to impose identical restrictions on the parameter space for all estimated

versions of the model.

3.1.1 The state space

The model under unspecified expectations has the following state space representation

10The determinacy and E-stability condition for the model is the Taylor principle: θπ >
(β−1)θx+ψ

ψ .
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yobst = HXt

Xt = Jt−1 + Mt−1Xt−1 + Nt−1εt

where Jt−1 = Ω−1
t−1µt−1, Mt−1 = Ω−1

t−1Ψ, Nt−1 = Ω−1
t−1ζ,

µt−1 =


Ct

r̄ + (1− θπ)π̄

ḡ

03×1

 , Ωt−1 =


I2×2 02×3 −Qt

−θx −θπ 1 0 0 0 0

0 0 0 1 −1 0 0

−1 0 0 0 1 −ω 0

02×5 I2×2



Ψ =


03×7

0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 ρa 0

0 0 0 0 0 0 ρe

 , ζ =



01×2 −1 01×4

01×7

01×2 1 01×4

01×3 1 01×3

01×7

02×5 I2×2


,

yobst = (xt, πt, it, gt)
′, and Xt = (xt, πt, it, gt, yt, at, et)

′. The expectation assumption cho-

sen by the researcher directly restrict the possible values of Ct and Qt, which become

nonlinear functions of the structural parameters of the model. In what follows, we show

how the different expectation assumption imply different relationships between Ct and

Qt and the structural parameters of interest.

3.1.2 Rational expectations

It is straightforward to show that imposing RE on Equations (23) and (24) allows them

to be collapsed to a more familiar form:

xt = r̄ + IERE
t xt+1 − (it − ĨE

RE

t πt+1) + (1− ω)(1− ρa)at (30)

πt = (1− β)π̄ + β ĨE
RE

t πt+1 + ψxt − et. (31)
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Substituting in Equation (25), we can map the model into the general form of Equations

(17) and (18)

yt = Γ + Ayt−1 + BĨEtyt+1 + Dvt + Kεt

vt = ρvt−1 + ut,

where yt = (xt, πt)
′, vt = (at, et)

′, ut = (εa,t, εe,t)
′, εt = (εi,t, 0)′,

Γ = m

(
π̄(θπβ − 1)

−π̄((θx(β − 1)− 1 + β + ψ − θπψ)

)
, B = m

(
1 1− θπβ
ψ β(1 + θx) + ψ

)
,

D = m

(
(ρa − 1)(ω − 1) θπ

(ρa − 1)(ω − 1)ω −1− θx

)
, ρ =

(
ρa 0

0 ρe

)

m = (1 + θx + θπψ)−1, A = 02×2, and K = −I2. Using the reduced form of Equation

(22) and the method of undetermined coefficient, we can solve analytically for the RE

solution in terms of the structural parameters: CRE = (0, π̄)′,

QRE =

(
− (ρa−1)(βρa−1)(ω−1)

1+θx−θxβρa+βρ2
a+θπψ−ρa(1+β+ψ)

θπ−ρe
1+θx−θxβρe+βρ2

e+θπψ−ρe(1+β+ψ)
(ρa−1)ψ(ω−1)

1+θx−θxβρa+βρ2
a+θπψ−ρa(1+β+ψ)

ρe−1−θx
1+θx−θxβρe+βρ2

e+θπψ−ρe(1+β+ψ)

)
, (32)

FRE = 02×2, and KRE = −I. This is of course the explicit mapping F : Θ → {C,F,Q}
discussed in Section 2.

There are two notable features of this mapping. First, RE places restrictions on the

intercept term CRE forcing them to be consistent with the steady state of the model,

which will not be the case under the other expectation assumptions. Second, the mapping

from the structural parameters to the reduced form of QRE is highly nonlinear. The

mapping to each element of QRE is an eight degree polynomial in β, ψ, θπ, θx, ρa, ρe, and

ω. The nonlinearity of this mapping is important because it means that relatively small

changes in the values of structural parameters can have large effects on the reduced form

and vice versa.
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3.1.3 Euler-equation learning and fixed beliefs

The next expectation assumptions we consider are EE-CGL and EE-FB. To implement

these strategies, we start with the same structural equation as under RE given by Equa-

tions (17) and (18). We assume that the agents perceived law of motion (PLM) takes

the same functional form of Equation (22)

yt = CEE + QEEvt + εt. (33)

The agents estimate their belief parameters using past data by a constant gain recursive

least squares algorithm

Φt = Φt−1 + γS−1
t zt−1(yt − 1− z′t−1Φt−1) (34)

St = St−1 + γ(zt−1z
′
t−1 − St−1), (35)

where zt is vector of data, Φt is a vector of regression coefficients, St is the estimated

variance-covariance matrix, and γ is a matrix of gain parameters that govern the weight

placed on new information.

Expectations under EE-CGL at time t are given by11

IEEE
t yt+1 = CEE

t−1 + QEE
t−1Rvt.. (36)

Substituting Equation (36) in for the beliefs in Equation (17) yields the following mapping

to the reduced form equations:

CEE
t = Γ + BCEE

t−1 = m
(

C
EE,11
t−1 + (C

EE,21
t−1 − π̄)(1 − βθπ)

C
EE,11
t−1 ψ + C

EE,21
t−1 (β(1 + θx) + ψ) − π̄(θx(β − 1) + ψ(1 − θπ) + β − 1)

)
(37)

and

QEE
t = BQEE

t−1ρ+ D (38)

= m
(

1 − ω + ρa(Q
EE,11
t−1 +Q

EE,21
t−1 (1 − θπβ) + ω − 1) θπ + (Q

EE,12
t−1 +Q

EE,22
t−1 − θπQ

EE,22
t−1 β)ρe

Q
EE,21
t−1 ρa(β(1 + θx) + ψ) + ψ(1 − ω + ρa(Q

EE,11
t−1 + ω − 1)) θx(Q

EE,22
t−1 βρe − 1) +Q

EE,12
t−1 ρeψ +Q

EE,22
t−1 ρe(β + ψ) − 1,

)
where CEE,ij

t−1 and QEE,ij
t−1 represent the ith row and jth column elements of CEE

t−1 and QEE
t−1,

respectively.

Comparing CRE to CEE
t , the restriction placed on the reduced form under RE are

loosened under EE-CGL in two ways. First, the reduced forms intercepts are no longer

11As is common in the literature, we assume agents know R.
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explicitly tied to the steady states of the model. They depend on other structural param-

eters and beliefs, which frees them to vary over time. Second, comparing QRE to QEE
t ,

the degree of nonlinearity of the mapping from structural parameters to the reduced form

has decreased. The reduction in nonlinearity allows for changes in structural parameters

to have smaller effects on the other parameters, which allows these parameters to take

on new values without having as significant an impact elsewhere in the model.

For example, consider the limit of the first element of QEE
t compared QRE as ρa → 1.

For the RE case, the coefficient goes to zero. Therefore, as the preference shock, at,

becomes more persistent, its affect on the output gap approaches zero. This of course

offsets the persistence by effectively removing the shock from the model. In the EE

case, however, no such restriction is imposed. Here as ρa goes to one, QEE,11
t goes to

m(QEE,11
t−1 +QEE,21

t−1 (1−θπβ)), which allows a more persistent preference shock to continue

to affect the output gap so long as QEE,11
t−1 and QEE,21

t−1 are nonzero.

The EE-FB case implies the same reduced form relationships. The only difference

between this case and EE-CGL is that time variation of C and Q is ruled out by assump-

tion.

3.1.4 Infinite-horizon learning fixed beliefs

The infinite-horizon learning solution uses the full forward-looking decision rules given

by Equation (23) and (24). This requires agents to forecast xt and πt as well as it for

T = t + 1, ...,∞. In contrast, there is no need to forecast interest rates under EE-CGL.

Therefore, to preserve our nested structure, we assume that agents know the coefficients

of the Taylor rule, which allows them to construct their expectation of it using their

forecast xt and πt from the same PLM assumed for the EE case (Equation 33). With

this assumption, agents’ expectations are computed as

IEIH
t

∞∑
T=t

βT−tyT+1 = CIH
t−1(1− β)−1 + QIH

t−1(I− βρ)−tρvt (39)

and

IEIH
t

∞∑
T=t

(λ1β)T−tyT+1 = CIH
t−1(1− λ1β)−1 + QIH

t−1(I− λ1βρ)−tρvt, (40)

where CIH
t−1 and QIH

t−1 are the coefficients of Equation (33) estimated using the constant

gain recursive least squares algorithm discussed previously. Substituting these expecta-

tions into Equation (23) and (24), the reduced form matrices take the following form

CIH
t = ΓIH + BIHCIH

t−1, where
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ΓIH = m

(
π̄(θπ−1)
(1−β)

− (1−β)π̄θπ
(1−βλ)

(1−β)π̄(θx+1)
(1−βλ)

+ π̄(θπ−1)ψ
(1−β)

)
,

BIH = m

(
1−β(θx+1)

(1−β)
− βθπλψ

(1−βλ)
1−βθπ
(1−β)

− βθπ(1−λ)
(1−βλ)

βλψ(θx+1)
(1−βλ)

+ ψ(1−β(θx+1))
(1−β)

β(1−λ)(θx+1)
(1−βλ)

+ ψ(1−βθπ)
(1−β)

)
,

and QIH
t = B′1,IHQIH

t−1 (I− βρ)−1 ρ+ B′2,IHQIH
t−1 (I− βλ1ρ)−1 ρ+ D, where

B′1,IH = m

(
1− β(1 + θx) 1− βθπ

ψ (1− β (θx + 1)) ψ (1− βθπ)

)
, and

B′2,IH = m

(
−βθπλψ −βθπ(1− λ)

βλψ (θx + 1) β(1− λ1) (θx + 1)

)
.

The IH-FB case is obtained by again setting γ = 0.

The infinite-horizon specifications case dramatically alters the mapping from struc-

tural parameters to the reduced form, while still nesting the RE solutions. The implied

restrictions turn out to allow a wider range of possible reduced form parameterizations

than is feasible under either RE or the EE specifications. We illustrate this numerically

in the next section.

3.2 Understanding how RE restrictions affect fit

We use a numerical exercise to illustrate the practical implications of the nonlinear rela-

tionship between the structural and reduced form parameters. The idea of this exercise

is to explore the range of the reduced form parameter, Q, implied for a range of key

structural parameters under different expectation assumptions.

We use the EE-FB and IH-FB assumptions to calculate the implied value of Q for

the following ranges of the structural parameters: 1.4 < θπ < 1.6, 0.1 < θx < 0.3,

.75 < ρa < .95, and .65 < ρa < .85. We calibrate the remaining parameters to β = 0.995,

ψ = 0.1, λ = 0.93, and ω = 0.06 and set the fixed beliefs to the RE values implied by

the midpoint of the respective ranges. We then ask what values of θπ, θx, ρa, and ρe are

necessary to generate the same Q under RE. To be precise, we let Ξ = (θπ, θx, ρa, ρe)
′.

and calculate G(Ξ, Θ̄) such that Θ̄ = (1.5, 0.2, 0.85, 0.75)′ for the aforementioned ranges

of the elements of Ξ. We then calculate ΘRE = F−1(G(Ξ, Θ̄)) and compare ΘRE to Ξ.

Figure 3 shows the comparison. Panels A and B show the reduced form values of
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QEEand QIH for the chosen grid, where the large black dots represents the values of QRE

implied by Θ̄ and Qij denote the ijth element of the Q matrix. Panels C, D, E, and F

show the grid of points for Ξ in red that is used to calculate QEE and QIH , respectively,

and the implied RE values of ΘRE that give rise to the same reduced form values in blue.

The EE and IH cases reveal two different ways in which the RE restrictions can be

relaxed. In the EE case, the reduction in nonlinearity means that same reduced form

parameter values can be explained by a wider range of Taylor rule parameters and AR

coefficients. This means that there is a less of a trade-off when fitting different com-

ponents of monetary policy and the shocks simultaneously. The persistence parameters

can move over a much larger range without significantly affecting the value of the Taylor

rule parameters. The RE case more tightly links these quantities together. Therefore,

small adjustments to one parameter to fit some aspect of the data has more significant

spillovers onto the other parameters in the model.

The IH case, however, is different. It explains a significantly larger reduced form

space than is possible under RE for the same parameter values. The space is so large

that the RE solution is incapable of covering the same area with parameter values that

satisfy the Taylor principle or stationarity. Of course, it is possible that these ranges of

the parameters space are not empirically relevant. However, as we will see in the next

section, that is not what we find.

The key takeaway from this exercise is that it is not necessary for the structural

parameters to change in a substantial way to fundamentally alter the way the model fits

the data. The nonlinearity of the mappings makes it so that small changes may imply a

fundamentally different fit.
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Figure 3: The mapping from structural parameters to the reduced form
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Notes: The Qij’s are the reduced form values of the matrix that multiplies the exogenous shocks in the model. The range of points shown in panels A and B are all the possible
values that elements of Q may take for the range of structural parameters shown in red in the remaining panels. The blue points in the remaining panels show the value that
structural parameters would need to take under RE to replicate the same range of Qij’s shown in panels A and B, respectively. In other words, the blue and red dots in panels C
and E produce the same range of reduced form values for Q in panel A and likewise for panels D, F, and B. The black dots in panels A and B show the RE reduced form value
implied by Θ̄ = (1.5, 0.2, 0.85, 0.75)′, the midpoint of the chosen ranges. The black dashed line in panel D denotes the determinacy condition for the model. Points below the line
correspond to indeterminate solutions under RE.
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4 Taking the model to the data

In this section, we estimate the five versions of the model using maximum likelihood

and compare the in-sample fit, the out-of-sample fit, the predicted impulse responses for

the structural shocks, and the implied moments. For estimation, we use US data from

1984q1 through 2008q3. As observables, we use the CBO measure of the output gap, the

GDP deflator measure of inflation, the three-month Treasury bill rate, and growth rate

of real GDP, which are each expressed in quarterly rates.

To avoid known issues with weak identification, we calibrate some of the structural

parameters. We set β = 0.995 and π̄ = 0.005, which implies a steady state nominal

interest rate of 4% in annualized terms.12 We set the slope of the Phillips curve, ψ,

to 0.1 following Ireland (2004), which in the Calvo pricing framework would correspond

to the average firm adjusting its price roughly once a year. Finally, we calibrate the

mean growth rate of output, ḡ, to the average growth rate observed over the estimation

period.13

The remaining parameters {θπ, θx, ω, ρa, ρe, σa, σe, σi, σg} are estimated.14 In the CGL

models, we also estimate the gain parameters. We allow there to be separate gains for

output gap and inflation (γx, γπ) to permit differing amounts of learning to contribute

to each variable. The learning beliefs are initialized at the RE estimates from the full-

sample. The FB beliefs are set to those same values. Therefore, all five models perfectly

nest the RE results. If the RE model is the true data generating process, then all five

models will provide the same inference.

12This puts the model slightly at odds with the data over our sample period, which has a mean
inflation rate of around 2.5% and a mean interest rate of around 4.8%. However, the mean output gap
in our sample is almost -0.75%, which makes it unclear whether the mean values of inflation and the
interest rates actually reflect steady-state values. If π̄ is freely estimated we find values ranging between
1% and 2%.

13We find that our results with respect to model fit are not sensitive to these calibrations choices
or to freely estimating all of the parameters. However, freely estimating all parameters does result in
significant difference in parameters estimates across the different model specifications, some of which
reflects weak identification.

14To construct confidence intervals for the structural parameter estimates, we use a method similar
to the one proposed by Stock and Watson (1998) for time-varying parameter models. We employ
this method because the constrained optimization routine we use to maximize the likelihood functions
provides unreliable numerical estimates of the Hessian matrix. The confidence intervals are constructed
for each parameter by selecting a grid surrounding the ML estimate of interest. We then re-maximize the
log-likelihood function by searching over all other parameters, while holding the parameter of interest
fixed at one point on the grid. The maximized log-likelihood value obtained at that point is then
compared to the original maximum log-likelihood value using a likelihood ratio test. The set of points
on the grid that yield maximized log-likelihood values that fail to reject the null hypothesis that the true
parameter vector lies in the restricted parameter space at the 5% level constitutes the 95% confidence
interval.
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Table 2: ML estimates

RE EE-FB EE-CGL IH-FB IH-CGL

θπ 1.577 1.123 1.114 1.578 1.591
[1.31 , 1.97] [0.99 , 1.61] [0.99 , 1.59] [1.32 , 1.94] [1.45 , 1.73]

θx 0.166 0.208 0.211 0.160 0.140
[0.08 , 0.29] [0.11 , 0.36] [0.11 , 0.37] [0.08 , 0.26] [0.07 , 0.23]

ω 0.000 0.000 0.000 0.066 0.000
[0.00 , 0.02] [0.00 , 0.01] [0.00* , 0.03] [0.00 , 0.48] [0.00 , 0.00]

ρa 0.933 0.926 0.912 0.973 0.995
[0.87 , 1.00] [0.86 , 0.99] [0.85 , 0.98] [0.95 , 0.99] [0.99 , 0.99]

ρe 0.967 0.917 0.927 0.684 0.543
[0.87 , 1.00] [0.80 , 1.00] [0.81 , 0.99] [0.50 , 0.86] [0.32 , 0.78]

σa × 100 1.671 1.633 1.560 0.555 0.110
[0.06 , 0.68] [1.36 , 2.04] [1.23 , 1.99] [0.19 , 1.38] [0.01 , 1.46]

σe × 100 0.071 0.072 0.073 0.166 0.229
[0.06 , 0.10] [0.06 , 0.09] [0.07 , 0.08] [0.11 , 0.22] [0.18 , 0.27]

σi × 100 0.558 0.558 0.561 0.560 0.557
[0.46 , 0.68] [0.46 , 0.73] [0.46 , 0.72] [0.47 , 0.70] [0.52 , 0.61]

σg × 100 0.179 0.180 0.180 0.175 0.179
[0.16 , 0.21] [0.16 , 0.22] [0.16 , 0.21] [0.15 , 0.21] [0.16 , 0.19]

γx - - 0.011 - 0.0008
[0.00 , 0.06] [0.00 , 0.011]

γπ - - 0.000 - 0.0017
[0.00 , 0.02] [0.00 , 0.0023]

Log Likelihood 1974.49 1982.60 1983.14 1986.84 1988.17

AIC -3930.98 -3947.20 -3944.28 -3955.68 -3954.34
LR Statistic (rel. RE) 16.22 17.30 24.70 27.36
LR Statistic (rel. FB) 1.08 2.66

Notes: ML estimates for the Ireland model under the five different assumptions for expectations. 95% confidence intervals
for the estimates are shown in brackets below the point estimates. The forecasting function in the FB cases and the initial
beliefs in the CGL cases are set to the RE solution implied by the estimates in the first column. LR refers to the likelihood
ratio.

4.1 In-sample fit comparison

Table 2 shows the estimation results for the five different model specifications. The

parameter estimates mostly reflect the three stylized facts. The four bounded rationality

strategies each improve the in-sample fit with respect to RE, the parameter estimates

are fairly similar across the different specifications with a few exceptions, and the gains

are estimated to be small. There is more movement in parameter estimates here than is

observed in the examples discussed in Section 1, but the confidence intervals for θx, θπ,

ω, ρa, and ρe all nearly overlap and of course these estimates do not rely on priors.15

Within the EE specifications, we observe no significant difference between the FB and

CGL cases. Both result in nearly identical parameter estimates and fit the data more or

15The likelihood surface is very flat for θπ in the EE specification moving towards the boundary of the
Taylor principle constraint. In monte carlo simulations, there is a pile-up problem in both the EE and
IH specifications, where a small percentage of estimates end up on this boundary despite the true value
being well away. We have not investigated whether this is a feature of other New Keynesian models
estimated under learning.
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less equally well. A similar result is obtained for the IH specifications. Although, the

improvement in fit between FB and CGL is more than twice as large as that observed

for the EE case. In addition, the overall fit of the IH version of the model is significantly

better than both EE specifications.

The relatively small and insignificant improvements in-sample fit between the FB

and CGL cases demonstrate that the introduction of time-varying parameters does not

account for the majority of improvement in the in-sample fit of the model. Most of the

increase in fit in both cases is obtained when the estimation of the structural parameters

are separated from beliefs (the FB cases), which allows the model to more flexibly fit the

data.

Table 3 quantifies the increased flexibility of the model under FB and CGL by report-

ing the elements of Q for each case (for CGL we show the values implied at the initial

belief) at their estimated values reported in Table 2 and the values of θπ, θx, ρa, and

ρe that would imply the same reduced form under RE.16 Consistent with the numerical

exploration in Section 3.2, the EE-FB and EE-CGL cases generate a modest loosening

of the cross-equation restrictions. The reduced form Q is modestly different from the

values estimated under RE. While the implied RE parameters that reproduce the same

Q remain within the feasible parameter space and even lie within the confidence intervals

of the RE estimates. The IH-FB and IH-CGL cases, on the other hand, imply drastically

different reduced forms from RE and the EE specifications. To reproduce the same Q
under RE requires parameter values that are infeasible and which would imply explosive

dynamics.

To further the point, we can quantify the severity of these restrictions by directly

estimating Q along with the full complement of the other parameters.17 This represents

the fully unrestricted case. We obtain a log likelihood value of 1,991 and

Q̂ =

(
−0.910 2.131

−0.008 −1.441

)
. (41)

Therefore, even the IH case remains somewhat restricted.18 However, it is the only case

16Because we calibrate π̄, the implied values of C are roughly equivalent across the five cases and not
shown here.

17For this exercise, we do not impose any structure on Q and allow its four elements to be freely
estimated along with the other parameters. C retains the same restrictions as those imposed under RE.
The remaining parameter estimates are almost identical to those obtained under IH-FB in this case with
the exception of θπ. Its value falls to θπ = 1.01.

18Although, IH dominates the unrestricted case in terms of AIC because of there are four extra
parameters in this case.
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Table 3: Implied reduced form estimates of Q

Q11 Q21 Q12 Q22 ΘRE = (θx, θπ, ρa, ρe)
′

RE 0.060 0.083 8.899 -2.901 [1.577, 0.166, 0.933, 0.967]
EE-FB 0.091 0.085 7.272 -2.921 [1.735, 0.242, 0.897, 0.911]
EE-CGL 0.091 0.085 7.126 -2.881 [1.736, 0.241, 0.897, 0.905]
IH-FB -0.858 0.023 2.367 -1.355 [15.625, 8.132, 4.754, 0.439]
IH-CGL -3.251 0.081 1.840 -0.937 [12.578, 5.469, 5.039, 0.130]

Notes: Reduced form values implied by the estimated parameters given in Table 2. The final column replicates the exercise
conducted in Section 3.2 and shows the value of the RE structural parameters, which would be consistent with the same
reduced form values.

that can come close to capturing the unconstrained values.

4.2 Out-of-sample fit

Next, we compare the different models’ real-time out-of-sample forecast accuracy for the

four observable variables to see whether improved in-sample fit translates into actual

forecasting power. We conduct a recursive real-time forecasting exercise, where we use

multiple vintages of data to simulate the information set that would have been available

to a forecaster at each point in time. We use the real-time data set provided by the

Philadelphia Federal Reserve for real-time data on GDP Deflator, GDP growth, and the

three-month Treasury bill. For a real-time measure of the output gap, we use the Fed’s

Green Book nowcast, which we assume that agents observe with a one-quarter lag.

Our full sample period runs 1984q1 - 2010q1. We construct forecast recursively start-

ing in 1991q1 and ending 2008q3 at four different horizons: the nowcast, one quarter

ahead, four quarters ahead, and six quarters ahead. The nowcast is included because

in real-time, GDP growth and the GDP Deflator measure of inflation are observed with

a one-quarter lag.19 We also extract from the models a real-time estimates of inflation

expectations.

To evaluate forecast accuracy, we compare the inflation and GDP forecasts to the

second release values available in the real-time data set. For the output gap, we use

the most recent vintage of the CBO measure of the variable. And for the inflation

expectations, we use the SPF mean nowcast of GDP Deflator inflation for one-step-ahead

expectations and the two-year ahead forecast of the same variable for long run inflation

expectations. Inference on improvements in forecast accuracy are obtained using the

Diebold and Mariano (1995) test statistic (DM) with the Harvey et al. (1997) small

19Since the interest rate is observed contemporaneously, we do not report a nowcast for this variable.
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sample and forecast horizon correction.20

Table 4 shows the out-of-sample results for the five cases plus results from a random

walk forecast for each variable. The random walk forecasts are included to show how

well the models do in absolute terms. The top row for each variable gives the root

mean squared forecast error (RMSFE) of the RE forecasts at the four different horizons.

The remaining rows give the relative RMSFE of the forecasts compared to RE with the

DM test statistic in parentheses below. Values below one represent an improvement in

forecast accuracy relative to the RE forecast.

The EE-FB and EE-CGL forecasts show significantly greater accuracy with forecast-

ing interest rates at all horizons relative to RE, marginal improvements for forecasting

inflation, and little to no improvements for forecasting real variables. We find that there

is also almost no difference in forecast accuracy between the EE-FB and EE-CGL cases.

Therefore, the forecasting results mirror the in-sample results. Moving from RE to an

EE specification generates some improvements in fit. However, the majority of the im-

provements are generated by the EE-FB case. The addition of learning adds little in the

way of forecasting power.

The IH-FB and IH-CGL forecasts show significant increases in forecast accuracy rel-

ative to RE for nominal variables and no improvement in real variables. The IH-FB

and IH-CGL cases also perform roughly equally well across all variables and horizons.

Learning does not appear to materially add to the forecasting power over and above

what occurs in the FB case. The IH cases, however, do on average forecast qualitatively

better than the EE specifications, which indicates that the observed improvement in the

in-sample fit does somewhat translate into out-of-sample forecasting power. Comparing

the model to the random walk forecast, all of the considered specifications do surprisingly

well. The four boundedly rational cases perform on average no worse than the random

walk in most cases.

Figure 4 shows the real-time inflation expectation estimates versus the SPF, while

Table 5 reports the RMSFE comparison. The steady state of inflation is calibrated

so that the long run inflation expectation under RE and FB is by construction the

same. Any difference in the short run expectations between RE and FB is driven by

different estimates of the unobserved shocks. Keeping with theory, we find that the EE

specifications produce short run expectations that more closely approximate the SPF,

while the IH specification produces better long run expectations. Although, neither

model produces compelling estimates that should be taken too seriously.

20This test statistic is found to work well on tests of real-time forecasts by Clark and McCracken
(2009) and Clark and McCracken (2011).
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Table 4: Real-time forecast results

Inflation GDP
Annualized RMSFE Annualized RMSFE

t (Nowcast) t+1 t+4 t+6 t (Nowcast) t+1 t+4 t+6

RE 1.09 1.01 1.08 0.95 RE 2.33 2.18 2.07 1.69

RMSFE Relative to RE RMSFE Relative to RE

RW 1.04 0.84** 0.91 1.05 RW 0.98 1.00 1.16 1.30
(3.29) (-1.99) (-1.07) (0.62) (-0.20) (-0.01) (1.72) (2.87)

EE-FB 0.98** 0.97 0.98* 0.97 EE-FB 1.13 1.01 0.99 0.99
(-1.90) (-1.15) (-1.32) (-1.05) (0.96) (0.16) (-0.31) (-0.54)

IH-FB 0.92*** 0.85*** 0.88*** 0.84*** IH-FB 1.07 0.99 1.02 1.03
(-3.20) (-2.98) (-2.44) (-2.70) (0.75) (-0.27) (0.87) (1.29)

EE-CGL 1.00 0.98 1.03 1.04 EE-CGL 1.03 0.98 1.00 1.00
(-0.26) (-0.75) (1.36) (1.17) (0.36) (-0.48) (0.00) (0.22)

IH-CGL 0.93*** 0.88*** 0.92** 0.89** IH-CGL 1.09 0.99 1.01 1.02
(-2.58) (-2.88) (-1.82) (-1.94) (0.83) (-0.20) (0.49) (0.76)

Interest Rates Output Gap
Annualized RMSFE Annualized RMSFE

RE - 1.64 1.88 2.09 RE 1.42 1.56 2.20 2.48

RMSFE Relative to RE RMSFE Relative to RE

RW - 0.28*** 0.81** 0.97 RW 1.03 1.05 1.06 1.08
(-4.75) (-1.76) (-0.30) (4.16) (3.51) (4.66) (4.31)

EE-FB - 0.81*** 0.89*** 0.93** EE-FB 1.09 1.05 1.00 0.99
(-3.30) (-2.18) (-1.73) (2.63) (1.61) (-0.03) (-0.70)

IH-FB - 0.70*** 0.83*** 0.91* IH-FB 1.08 1.05 1.02 1.02
(-4.11) (-2.42) (-1.37) (2.48) (1.64) (1.02) (1.38)

EE-CGL - 0.83*** 0.89*** 0.94* EE-CGL 1.03 0.97 0.95*** 0.95***
(-3.01) (-2.21) (-1.52) (1.08) (-1.25) (-2.56) (-3.33)

IH-CGL - 0.73*** 0.83*** 0.90** IH-CGL 1.08 1.05 1.01 1.01
(-3.96) (-2.47) (-1.70) (2.27) (1.36) (0.51) (0.32)

*** p < 0.01, ** p < 0.05, * p < 0.1

Notes: Diebold and Mariano test statistics are reported in parenthesis. We only place asterisks on cases where a significant
improvement is obtained.
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Figure 4: Inflation Expectations vs SPF
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Notes: Comparison of the real-time model implied inflation expectations at a short and long horizon compared
to the SPF.

The EE-CGL model produces significantly better inflation expectations estimates

than EE-FB, however, this is completely driven by a persistent level shift in the EE-CGL

estimates. The EE-FB and EE-CGL inflation expectations actually have a correlation of

0.97, which suggests that it is a low-frequency drift that is driving fit. The correlation

between IH-FB and IH-CGL is 0.89 and the correlation between EE-CGL and IH-CGL

is 0.71. Overall, none of the short run inflation expectations estimates have a correlation

exceeding 0.55 with the mean SPF forecast.

The caveat, of course, is that by design we have fixed initial beliefs to their REE

values. If we did not impose this restriction, both EE and IH specifications ability to

match inflation expectations greatly improves as documented by Slobodyan and Wouters

(2012a) and Cole and Milani (2019). The improvement though comes from matching

the persistent differences between survey expectations and the actual data, which again

highlight CGL’s ability to capture long run dynamics as opposed to short-run business

cycle dynamics.
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Table 5: Inflation Expectations vs SPF

RE Relative to RE

RMSFE EE-FB IH-FB EE-CGL IH-CGL

SR 0.802 0.960∗∗∗ 1.231 0.834∗∗∗ 1.327
(-1.849) (2.893) (-4.316) (3.364)

LR 0.638 1.000 1.000 1.004 0.986∗∗

- - (0.497) (-1.680)

*** p < 0.01, ** p < 0.05, * p < 0.1

Notes: Diebold and Mariano test statistics are reported in parenthesis. We only place asterisks
on the cases were significant improvements are obtained.

4.3 Impulse responses

We now turn to exploring the persistence implied by the five models directly. Figure 5, 6,

and 7 show the estimated impulse responses for the monetary policy (εi,t), the preference

(εa,t), and the cost push (εe,t) shocks, respectively. We set the size of the shock to the

RE estimated values for one standard deviation and we allow beliefs to update in order

to propagate the shocks.

The monetary policy shock provides the clearest picture of the role that CGL can

plays in adding persistence. There is no exogenous persistence for the monetary policy

shocks in this model. Any persistence from a monetary policy shock must be generated

through expectations. Therefore, the RE and FB cases, by construction, can only respond

in the period the shock is realized. In Figure 5, we see that the shock is propagated to a

degree by both EE-CGL and IH-CGL. The propagation is much greater in the IH case

and even delivers a hump shaped response. The duration, however, goes far beyond

typical business cycle frequencies with the shock generating effects that last roughly 25

years.

Figure 6 shows the impulse response for the preference shocks. The EE-FB and EE-

CGL impulse responses are identical in this case. Learning does not appear to add any

persistence. In contrast, the IH-FB and IH-CGL response are quite different. The IH-FB

response is similar to EE and RE cases, while IH-CGL exhibits extreme persistence.

Figure 7 shows the cost-push shock. There is little difference between FB and CGL

for either EE or IH specifications. Beliefs do not move much in response to cost-push

shocks under either specification.

The net takeaway from the impulse responses is that CGL does not add much, if

any, persistence in the EE specification. Only the IH specification implies any additional
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Figure 5: Monetary policy shock
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Notes: The shock is same for all models. The shock size is set to one standard deviation
using the RE estimate for that value reported in Table 2.

Figure 6: Preference shock
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Figure 7: Cost-push shock
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Notes: The shock is same for all models. The shock size is set to one standard deviation
using the RE estimate for that value reported in Table 2.

persistence of shocks through expectations. However, the persistence is beyond what

most modelers intend to capture with respect to the duration of shocks over the business

cycle.

4.4 Model moments

Finally, we compare the estimated models’ implied standard deviations and autocorrela-

tion for the four observable endogenous variables to one another and to the actual data.

Table 6 reports the actual and estimated model implied standard deviations for the out-

put gap, inflation, the three-month treasury bill rate, and real GDP growth, which are

expressed in annualized terms. The four bounded rationality strategies all imply vari-

ances that are qualitatively closer to the actual data than RE. The estimated RE model

predicts too much volatility in each variable. The majority of the improvements here,

though, occur in the FB cases and then carry over into the CGL cases. Therefore, once

again, it appears that loosening the cross-equation restrictions brings the model closer

to the data, while learning adds only marginal improvements.

Figure 8 shows the autocorrelation functions implied by the estimated models com-

pared to the actual data. Overall, the FB and CGL cases capture a wider range of

correlations than the RE model is capable of, which is more in-line with the data. How-
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Table 6: Actual and estimated model implied standard deviation of observable variables

Source Output Gap Inflation Interest Rates GDP Growth

Data 1.40 0.97 2.13 2.04

RE 2.63 3.68 4.79 4.14
EE-FB 1.48 2.58 2.93 3.92
EE-CGL 1.17 2.94 3.64 3.63
IH-FB 2.23 1.26 2.66 4.08
IH-CGL 0.93 1.66 2.94 4.26

Notes: Actual and estimated model implied standard deviations for the four observable data series
used in estimation. The results reflect the estimated values provided in Table 2.

Figure 8: Autocorrelation functions

Notes: Actual and estimated model implied autocorrelation functions. The figures reflect the esti-
mated values reported in Table 2.
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ever, none of the models is able to fully approximate the autocorrelation present in the

data.

As in previous comparisons along the other dimensions, the EE-FB and EE-CGL

models predict nearly identical autocorrelations functions across the four variables. This

indicates that learning does not add much above the loosening of restriction that is shared

with the fixed belief case. But, there are significant differences between the IH-FB and

the IH-CGL specifications. These cases predict fairly distinct autocorrelation functions

despite having nearly identical parameterizations, which indicates that learning is playing

a role in generating different dynamics in the simulated data.

4.5 Discussion

The common finding across the four considered dimensions is that the FB case moves the

model significantly closer to capturing the data relative to RE. The additional assump-

tion of CGL does not add much under the EE specification and makes only a modest

contribution under the IH specification. This should be somewhat surprising given the

fact that the FB specifications are conditioned on the RE estimates. It is arguably

the smallest deviation from rationality that one can consider, yet it provides significant

improvements in model fit across a range of dimensions.

We argue that an FB-type case is the appropriate benchmark to assess a bounded

rationality expectation assumption. This case allows for the possibility that RE is the

correct assumption while imposing different restrictions on the structural parameters.

Not all expectations assumption will nest RE as in the cases considered here. But it

should be possible to construct specifications that come close to nesting the RE predic-

tions for most models, which would allow a researcher to distinguish which assumptions

are supported by the data and which are not.

The fact that IH-CGL model delivers the best all-around performance of any of the

specifications considered is a comforting finding for the DSGE research program. Al-

though IH learning is squarely a bounded rationality strategy, it preserves the underlying

microeconomic foundations of the model with respect to the agent’s decision problem.

Therefore, misspecification of how expectations are formed may be the key assumption

putting the New Keynesian model at odds with the data, which makes bounded rational-

ity strategies, such as infinite-horizon learning, a promising approach to reconcile these

models with the data.21

21This conclusion is also supported by recent a DSGE-VAR study of bounded rationality models by
Cole and Milani (2019).
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5 Stylized facts revisited

In Section 2.2, we showed that any estimated first-order approximated DSGE model

allows for similar pathologies as those highlighted in the previous section. However, the

extent to which these issue matter will depend on the details of the specific model under

consideration. The basic New Keynesian model we study here is at the center of almost

all policy-relevant DSGE models. Therefore, it is likely that larger models will inherit

these issues.

One way to quickly assess whether RE is a significant source of misspecification is to

estimate a Fixed Belief case using the thought experiment we have explored throughout

this paper. To illustrate, we explore an EE-FB case in the model of Smets and Wouters

(2007). Recall that the Smets and Wouters model under adaptive learning, detailed in

Slobodyan and Wouters (2012b), exhibited all three stylized facts. Therefore, we ask to

what extent can an EE-FB case generate similar results as EE-CGL.

For this exercise, we use the replication files provided by the American Economic Re-

view for Smets and Wouters (2007), which estimate the model using Bayesian techniques

with the software package Dynare. We start by replicating the benchmark case found

in Table 1 and Table 1B of Smets and Wouters paper.22 For the FB case, we construct

the fixed belief using the posterior mode estimates from the RE estimation. We then

estimate structural parameters of the FB model using the same priors as in the RE case.

Table 7 shows the replication and EE-FB results in the rightmost panel. For ease of

comparison to our previous results, we only report a subset of the parameters estimates.

The full set of parameters estimates and priors are given in Table 8 in the appendix.

The EE-FB case clearly exhibits the same patterns as noted in the parsimonious model

studied in Section 4. The parameter estimates are nearly unchanged relative to the RE

estimates, yet the marginal likelihood is significantly improved.

To compare EE-FB with Slobodyan and Wouters (2012b), we present their estimation

results for two of their reported EE case and their RE results. The first case, MSV-CGL

with initial beliefs set to RE, represents an interesting alternative to our EE-FB case to

assess the role that learning plays in improving fit. Here, they set the initial beliefs to

those implied by RE using the current estimated parameter values. Therefore, in the first

period, the model is equivalent to RE solution, where beliefs and structural parameters

satisfy all RE restrictions. After the first period, beliefs are allowed to drift. They find

22Our results differ slightly from the results reported in Smets and Wouters (2007) for the RE case.
However, since we use their official replications files, we have no reason to doubt that the observed
differences are anything more than numerical imprecision, which arises from running the estimation on
different versions of Dynare and Matlab.
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that letting these beliefs drift does not add to fit. It is only when initial beliefs are

allowed to be materially different from what is implied by the current estimates of the

structural parameters that fit is found to improve.

The second MSV-CGL case reported uses optimized initial beliefs, which is a joint

estimation of initial beliefs and CGL parameter estimates without imposing that the

initial beliefs conform to any RE solution of the model. The estimation is done iteratively

with the estimation of structural parameters taking the initial beliefs as given, which like

our EE-FB case allows the initial beliefs to differ from the structural parameters at all

times. Our EE-FB case produces an improvement in fit relative to RE that explains

about a third of the improvement that is obtained under the optimized initial belief case.

Although, the optimized initial beliefs are jointly estimated, so the degrees of freedom,

in this case, are substantially higher than in the EE-FB case. In addition, the estimated

gain remain small. It is likely that an EE-FB case with optimized beliefs would perform

similarly.23 Therefore, a significant proportion of the improvement in fit in the Smets

and Wouters model for MSV learning can also be explained by a relaxation in the cross-

equation restrictions imposed by RE.

6 Conclusion

This paper demonstrates that improvements in the in-sample fit of New Keynesian DSGE

models under adaptive learning may speak more to the misspecification of the model

under RE than to the veracity of the learning assumption that is being considered. In

particular, we have shown that both Euler-equation and infinite-horizon learning generate

significant improvements in in-sample fit and modest improvements in real-time out-of-

sample forecast accuracy compared to RE. However, the actual assumption of learning

only appears to meaningfully add to the model’s predictions in the infinite-horizon case.

The improvements under Euler-equation learning are instead explained by the relaxation

of the RE restrictions and do not rely on backward-looking behavior by the agents. We

conclude that constant gain learning appears to best capture longer-run movements in

data that go beyond typical business cycle frequencies.

Our findings suggest that empirical comparisons between bounded rationality models

and RE should be done with care. Significant improvements in model fit relative to RE do

not necessarily provide evidence in favor of the alternative strategy since even the most

23There is a discrepancy in the marginal likelihood values, however, since our results match Smets
and Wouters (2007) we believe this is due to numerical issues relating to difference in software versions
across both Dynare and Matlab.
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Table 7: Stylized facts revisited

Slobodyan and Wouters (2012b) Replication

RE MSV-CGL MSV-CGL RE Replication FB Replication
(Init. REE) (Opt. Init.) (Init. REE)

Monetary policy and habits

MP inflation 2.04 2.02 1.91 2.05 1.74
[1.75, 2.33] [1.74, 2.32] [1.58, 2.22 [1.77, 2.35] [1.41, 2.07]

MP output 0.09 0.08 0.13 0.09 0.11
[0.05, 0.13] [0.05, 0.12] [0.07, 0.18] [0.05, 0.13] [0.05, 0.17]

MP output growth 0.22 0.22 0.19 0.22 0.19
[0.18, 0.27] [0.017, 0.26] [0.15, 0.24] [0.17, 0.26] [0.15, 0.23]

MP smoothing 0.81 0.81 0.84 0.82 0.88
[0.77, 0.85] [0.77, 0.85] [0.80, 0.88] [0.78, 0.86] [0.84, 0.92]

Habits 0.71 0.72 0.80 0.71 0.70
[0.64, 0.78] [0.65, 0.79] [0.75, 0.84] [0.64, 0.79] [0.58, 0.83]

AR parameters

Productivity 0.96 0.96 0.96 0.96 0.96
[0.94, 0.98] [0.94, 0.98] [0.94, 0.99] [0.94, 0.97] [0.93, 0.99]

Risk premium 0.22 0.23 0.23 0.20 0.21
[0.08, 0.36] [0.07, 0.36] [0.13, 0.32] [0.07, 0.34] [0.04, 0.36]

Gov. spending 0.98 0.97 0.96 0.97 0.97
[0.96, 0.99] [0.96, 0.99] [0.96, 0.99] [0.95, 0.98] [0.95, 0.99]

Investment 0.71 0.72 0.45 0.74 0.71
[0.62, 0.81] [0.62, 0.82] [0.33, 0.56] [0.64, 0.84] [0.57, 0.87]

MP shock 0.15 0.16 0.15 0.15 0.14
[0.04, 0.24] [0.05, 0.26] [0.05, 0.26] [0.04, 0.25] [0.04, 0.23]

Price mark-up 0.89 0.89 0.93 0.90 0.90
[0.81. 0.97] [0.81, 0.97] [0.88, 0.97] [0.82, 0.98] [0.83, 0.97]

Wage mark-up 0.97 0.97 0.97 0.97 0.95
[0.95, 0.99] [0.95, 0.99] [0.95, 0.99] [0.95, 0.99] [0.92, 0.99]

St. Dev. Shocks

Productivity 0.46 0.45 0.47 0.43 0.44
[0.41, 0.51] [0.41, 0.50] [0.42, 0.52] [0.39, 0.47] [0.39, 0.49]

Risk premium 0.24 0.24 0.25 0.24 0.26
[0.20, 0.28] [0.20, 0.28] [0.22, 0.28] [0.21, 0.28] [0.23, 0.29]

Gov. spending 0.53 0.53 0.53 0.54 0.54
[0.48, 0.58] [0.48, 0.58] [0.48, 0.58] [0,49, 0.59] [0.49, 0.59]

Investment 0.45 0.45 0.61 0.45 0.64
[0.37, 0.53] [0.37, 0.53] [0.53, 0.68] [0.38, 0.53] [0.58, 0.70]

MP shock 0.24 0.24 0.24 0.25 0.24
[0.22, 0.27] [0.22, 0.27] [0.21, 0.26 [0.22, 0.27] [0.21, 0.26]

Price mark-up 0.14 0.14 0.14 0.14 0.12
[0.11, 0.17] [0.11, 0.17] [0.12, 0.16] [0.11, 0.17] [0.11, 0.14]

Wage mark-up 0.24 0.24 0.23 0.24 0.26
[0.21, 0.28] [0.20, 0.28] [0.20, 0.26] [0.20, 0.28] [0.24, 0.29]

Gains - 0.018 0.017 - -
[0.001, 0.034] [0.006, 0.021]

Marginal Likelihood -922.8 -922.6 -911.0 -924.8 -920.3

Notes: This table reports the estimated values reported by Slobodyan and Wouters (2012b) compared
with a replication of their results under RE and FB using the model of Smets and Wouters (2007).
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parsimonious deviations from rationality can generate large improvements in fit. On the

other hand, the dramatic improvements in the fit that can be obtained by deviating

from rationality strongly support considering such approaches in empirical DSGE work.

The underlying economic decisions that are captured by the DSGE framework remain

perfectly intact within the infinite-horizon specification, for example, and we find that it

fits the data best. Therefore, bounded rationality remains a promising way to reconcile

DSGE models with data but should be approached cautiously.

Appendix A: The model

We describe the model and derive the households’ and firms’ decision rules following

Preston (2005) that depend on expectations but not specifically on any explicit assump-

tion for how expectations are formed. This gives us a general setting from which the

consequences of different expectation assumption on the reduced form may be tracked

systematically.

Households seek to maximize the following expected utility function

ĨEi,t

∞∑
t=0

βt
[
atln(Ci,t) + ln(Mi,t/Pt)− η−1hηi,t

]
(A1)

by choosing consumption, money holdings, labor supply, and by taking into account a

preference shock at, where ĨEt represents a general expectations operator that is yet to

be defined.24 The representative household is faced with the budget constraint

Mi,t−1 +Bi,t−1 + Tt +Wthi,t + ∆i,t ≥ PtCi,t +Bi,t/rt +Mt, (A2)

where M is nominal money balances, B is nominal bond, T is transfers, W is the nominal

wage, and ∆ is nominal profits the household receives from ownership of firms.

Production in the economy is separated into two sectors: a perfectly competitive

finished goods sector and a monopolistically competitive intermediates goods sector. The

finished goods sector uses a continuum of intermediates goods of prices Pj to construct

the finished good. The production function is a CES constant returns to scale technology

(∫ 1

0

Y
(θt−1)/θt
j,t dj

)θt/(θt−1)

≥ Yt, (A3)

where θt is a cost push shock.25 The finished-good-producing firms maximize profits

24It is assumed that 0 < β < 1, η ≥ 1, and ln(at) = ρaln(at−1) + εa,t.
25θt = (1− ρθ)ln(θ) + ρθln(θt−1) + ε(θ, t).
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subject to demand for their good

Yj,t = (Pj,t/Pt)
−θt Yt. (A4)

The finished good price is given by

Pt =

(∫ 1

0

P 1−θt
j,t dj

)1/(1−θt)

(A5)

for all t. The intermediate-goods-producing firms hire hj,t units of labor to manufacture

Yj,t units of outputs using

Zthj,t ≥ Yj,t, (A6)

where Zt is an aggregate technology shock.26 To introduce price stickiness, it is assumed

that firms face an explicit cost to adjust nominal prices following Rotemberg (1982) that

is measured in terms of finished goods

φ

2

(
Pj,t

π̄Pj,t−1

− 1

)2

Yt. (A7)

Lastly, the output gap is defined as the ratio between the actual and efficient levels of

output

xt =

(
1

at

)1/η
Yt
Zt
. (A8)

Household decision rule

The first order conditions of the household’s optimal decision are given by

atC
−1
i,t = βrtĨEi,tat+1C

−1
i,t+1π

−
t+1 (A9)

hη−1
i,t = atC

−1
i,t WtP

−1
t (A10)

Bi,t−1 +Wthi,t + ∆i,t = PtCi,t +Btr
−1
t , (A11)

where we have eliminate the variables dealing with money and transfers in the budget

constraint. Starting with budget constraint, we put it into real terms by dividing by the

price level27 and make it stationary using substitution to account for the unit root TFP

26ln(Zt) = ln(z) + ln(Zt−1) + εz,t.
27We assume wt = Wt/Pt, Dt = ∆t/Pt, bt = Bt/Pt.
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process Zt
28

bi,t−1π
−1
t + ωtZthi,t + di,tZt = ci,tZt + bi,tr

−1
t .

Then, rearranging and summing, we obtain the lifetime budget constraint

∞∑
T=t

βT−tci,TZt =
∞∑
T=t

βT−t(wTZThi,T + di,TZt),

which allows us to divide out Zt. Then noting that wThi,T + di,T = yi,T , we have

∞∑
T=t

βT−tĉi,T =
∞∑
T=t

βT−tŷi,t. (A12)

We then log-linearize the stationary Euler-equation

ĉi,t = ĨEi,tĉi,t+1 − (it − Etπ̂t+1) + (ρa − 1)ât

and solve it backwards recursively to get

ĨEi,tĉi,T+1 = ĉi,t + ĨEi,t

T∑
s=t

((is − π̂s+1)− (ρa − 1)ât).

Then summing and discounting this expectation we get

ĨEi,t

∞∑
T=t

βT−tĉi,T+1 =
1

1− β
ĉi,t +

1

1− β
ĨEi,t

∞∑
T=t

βT−t((iT − π̂T+1)− (ρa − 1)âT ). (A13)

Combining Equation (A12) and (A13) yields the household’s decision rule for consump-

tion

ĉi,t = ĨEi,t

∞∑
T=t

βT−t [(1− β)yj,T+1 − (iT − π̂T+1)− (ρa − 1)âT ] .

Aggregating across households and using the log-linearized output gap, we obtain the

aggregate IS curve

xt = −ωât + ĨEt

∞∑
T=t

βT−t [(1− β)(xT+1 + ωρaâT )− (iT − π̂T+1)− (ρa − 1)âT ] , (A14)

28We assume ωt = Wt/(PtZt), dt = ∆t/(PtZt).

42



which is absent any assumption about how expectations are formed.

Firm decision rule

Firms maximize the present value of their companies

ĨEj,t

∑
T=t

Qt,TPTΠj,T , (A15)

where

Πj,T =

(
Pj,T
PT
− MCj,T

PT

)
Yj,t −

Φ

2

(
Pj,T

π̄Pj,T−1

− 1

)2

Yt (A16)

and Qt,T = βT−t aT
cT

. The first order condition of the firm’s problem is

Φ

(
Pj,t

π̄Pj,t−1

− 1

)
1

π̄Pj,t−1

= ĨEj,t

[
Qt,t+1Yt+1

Qt,tYt
Φ

(
Pj,t+1

π̄Pj,t
− 1

)
Pj,t+1

π̄P 2
j,t

]
(A17)

+ θt

(
Pj,t
Pt

)−1−θt (wtθt − Zt(θt − 1)Pj,t
P 2
t Zt

)
.

Because we assume π̄ ≥ 1, the model does not have a steady state price level. Therefore,

to make the model stationary, we define: P̂j,t+i = Pj,t+i/Pt+i and πt+i = Pt+i/Pt+i−1 for

all i. Likewise, wages are made stationary by the following substitution ωt = wt/PtZt.

Substituting in these definitions yields

Φ

(
P̂j,tPt

π̄P̂j,t−1Pt−1

− 1

)
1

π̄P̂j,t−1Pt−1

= ĨEj,t

[
Qt,t+1Yt+1

Qt,tYt
Φ

(
P̂j,t+1Pt+1

π̄P̂j,tPt
− 1

)
P̂j,t+1Pt+1

π̄P̂ 2
j,tP

2
t

]
+

(
P̂j,t

)−θt (
θtωt + (1− θt)P̂j,t

)
.

Now, noting that market clearing implies Ct = Yt, multiplying both sides by Pt, and

using the definition of inflation we get

Φ

(
P̂j,tΠt

Π̄P̂j,t−1

− 1

)
Πt

π̄P̂j,t−1

= ĨEj,t

[
at+1

at
Φ

(
P̂j,t+1Πt+1

π̄P̂j,t
− 1

)
P̂j,t+1Πt+1

π̄P̂ 2
j,t

]
+

(
P̂j,t

)−θt (
θtωt + (1− θt)P̂j,t

)
.

Log-linearizing this expression
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−Φpj,t−1 +(Φ(β+1)−1+ θ̄)pj,t−Φβ ĨEj,tpj,t+1 = Φβ ĨEj,tπt+1−Φπt− ω̂t(1− θ̄)− θ̂t (A18)

and introducing lag polynomials, we can write this as

(
1

β
L2 − Φ(β + 1)− 1 + θ̄

Φβ
L+ 1

)
ĨEj,tpj,t+1 =

1

β
(πt − βEtπt+1) +

1− θ̄
βΦ

ω̂t +
1

Φβ
θ̂t.

(A19)

Factoring the lag polynomial and solving forward the unstable root yields

(1− λ1L)pj,t =
−λ−1

2 L−1

1− λ−1
2 L−1

L

β

(
πt − βEtπt+1 +

1− θ̄
Φ

ω̂t +
1

Φ
et

)
= −λ1ĨEj,t

∞∑
T=t

(λ1β)T−tπT + λ1β ĨEj,t

∞∑
T=t

(λ1β)T−tπT+1

+ĨEj,t

∞∑
T=t

βT−t(ψxT − eT ).

where (θ̄ − 1)ηΦ−1ωt = ψxt, Φ−1θ̂t = et, 0 < λ1 < 1, λ2 > 1, λ2 = 1
λ1β

, and λ1 + λ2 =

(Φβ)−1(Φ(β + 1)− 1 + θ̄). Combining terms we have29

(1− λ1L)pj,t = −πt + λ1ĨEj,t

∞∑
T=t

(λ1β)T−t
1− λ1

λ1

πT + ψxT − eT .

Finally, aggregating across firms yields the aggregate Phillips curve, which is free of any

expectations assumptions

πt = λ1ĨEt

∞∑
T=t

(λ1β)T−t
(

1− λ1

λ1

πT + ψxT − eT
)
. (A20)

Monetary policy

The model is closed with a standard contemporaneous Taylor rule

it = r̄ + π̄ + θπ(πt − π̄) + θxxt + εi,t, (A21)

29noting that −λ1πt − λ21βπt+1 − λ31β2πt+2... and λ1βπt+1 + (λ1β)2πt+2 + (λ1β)3πt+3... and −λ1πt +
λ1β(1− λ1)πt+1 + (λ1β)2(1− λ1)πt+2 + (λ1β)3(1− λ1)πt+3....
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where εi,t is an i.i.d. monetary policy shock.

Appendix B: Smets and Wouters replication

Table 8: Smets and Wouters’ Model

RE FB

Prior Mean Post. Mean 90% HPD Interval Prior P. St. Dev Prior Mean Post. Mean 90% HPD Interval Prior P. St. Dev

ρa (ρz) 0.5 0.955 0.936 0.974 beta 0.2 ρa (ρz) 0.5 0.956 0.927 0.986 beta 0.2
ρb (ρa) 0.5 0.204 0.070 0.337 beta 0.2 ρb (ρa) 0.5 0.205 0.036 0.358 beta 0.2
ρg 0.5 0.966 0.951 0.981 beta 0.2 ρg 0.5 0.967 0.946 0.989 beta 0.2
ρl 0.5 0.742 0.642 0.844 beta 0.2 ρl 0.5 0.714 0.565 0.863 beta 0.2
ρr (ρi) 0.5 0.148 0.044 0.249 beta 0.2 ρr (ρi) 0.5 0.141 0.041 0.234 beta 0.2
ρp (ρe) 0.5 0.895 0.817 0.977 beta 0.2 ρp (ρe) 0.5 0.897 0.829 0.968 beta 0.2
ρw 0.5 0.968 0.948 0.988 beta 0.2 ρw 0.5 0.950 0.915 0.987 beta 0.2
µp 0.5 0.715 0.547 0.882 beta 0.2 µp 0.5 0.699 0.605 0.791 beta 0.2
µw 0.5 0.830 0.728 0.938 beta 0.2 µw 0.5 0.829 0.769 0.890 beta 0.2
φ 4 5.382 3.688 7.102 norm 1.5 φ 4 4.657 3.147 6.113 norm 1.5
σc 1.5 1.381 1.163 1.593 norm 0.375 σc 1.5 1.006 0.421 1.561 norm 0.375
h 0.7 0.713 0.643 0.788 beta 0.1 h 0.7 0.704 0.579 0.833 beta 0.1
ξw 0.5 0.687 0.577 0.803 beta 0.1 ξw 0.5 0.684 0.590 0.778 beta 0.1
σl 2 1.532 0.598 2.457 norm 0.75 σl 2 1.887 0.829 2.894 norm 0.75
ξp 0.5 0.652 0.555 0.745 beta 0.1 ξp 0.5 0.596 0.500 0.682 beta 0.1
ιw 0.5 0.568 0.358 0.774 beta 0.15 ιw 0.5 0.601 0.391 0.817 beta 0.15
ιp 0.5 0.241 0.096 0.382 beta 0.15 ιp 0.5 0.384 0.192 0.589 beta 0.15
ψ 0.5 0.476 0.306 0.648 beta 0.15 ψ 0.5 0.418 0.219 0.612 beta 0.15
Ψ 1.25 1.703 1.577 1.825 norm 0.125 Ψ 1.25 1.652 1.530 1.775 norm 0.125
rπ (θπ) 1.5 2.054 1.765 2.354 norm 0.25 rπ (θπ) 1.5 1.740 1.406 2.071 norm 0.25
ρ 0.75 0.817 0.776 0.857 beta 0.1 ρ 0.75 0.880 0.843 0.918 beta 0.1
ry (θx) 0.125 0.090 0.051 0.126 norm 0.05 ry (θx) 0.125 0.112 0.053 0.171 norm 0.05
rDeltay 0.125 0.217 0.173 0.262 norm 0.05 rDeltay 0.125 0.190 0.145 0.234 norm 0.05
p̄i 0.625 0.654 0.535 0.770 gamma 0.1 p̄i 0.625 0.631 0.497 0.765 gamma 0.1
100(β−1 − 1) 0.25 0.251 0.093 0.407 gamma 0.1 100(β−1 − 1) 0.25 0.252 0.091 0.401 gamma 0.1
l̄ 0 0.291 -1.285 1.912 norm 2 l̄ 0 -0.066 -1.635 1.518 norm 2
γ̄ 0.4 0.442 0.415 0.470 norm 0.1 γ̄ 0.4 0.440 0.413 0.467 norm 0.1
ḡ 0.5 0.609 0.454 0.766 norm 0.25 ḡ 0.5 0.600 0.442 0.760 norm 0.25
α 0.3 0.292 0.218 0.362 norm 0.05 α 0.3 0.266 0.194 0.335 norm 0.05
σa (σz) 0.1 0.432 0.386 0.474 invg 2 σa (σz) 0.1 0.443 0.397 0.488 invg 2
σb (σa) 0.1 0.242 0.205 0.282 invg 2 σb (σa) 0.1 0.259 0.232 0.286 invg 2
σg 0.1 0.540 0.488 0.590 invg 2 σg 0.1 0.538 0.486 0.588 invg 2
σl 0.1 0.453 0.375 0.529 invg 2 σl 0.1 0.639 0.575 0.703 invg 2
σr (σi) 0.1 0.246 0.220 0.270 invg 2 σr (σi) 0.1 0.235 0.212 0.258 invg 2
σp (σe) 0.1 0.138 0.108 0.166 invg 2 σp (σe) 0.1 0.123 0.106 0.138 invg 2
σw 0.1 0.242 0.204 0.279 invg 2 σw 0.1 0.262 0.236 0.287 invg 2

Notes: Prior and posterior distributions for the model of Smets and Wouters (2007) estimated under RE and FB. The
main labels correspond to parameters names in Smets and Wouters’ paper. The parameters names in parenthesis show the
corresponding parameter in the Ireland model.
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