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Forward Guidance Puzzle

1 Introduction

A near ubiquitous feature of standard rational expectations (RE) structural monetary policy

models is that credible promises to hold interest rates at zero for extended periods of time can

generate significant jumps in output and inflation in the period the policy is announced. More-

over, the contemporaneous impact of a fixed future policy intervention can be made arbitrarily

large today, when interest rates are constrained, simply by pushing the actual implementation

of the policy farther into the future, a phenomenon known as the forward guidance puzzle.

Since this feature of structural monetary models was first pointed out by papers such as Del

Negro, Giannoni and Patterson (2012) and Carlstrom, Fuerst and Paustian (2015), a number of

authors have sought to ameliorate and explain away this puzzle using, for example, credibility

(Haberis, Harrison and Waldron, 2019), imperfect information (Carlstrom et al., 2015; Kiley,

2016), bounded rationality or level-k thinking (Gabaix, 2020; Angeletos and Lian, 2018; Farhi

and Werning, 2019), life-cycle considerations (Del Negro et al., 2012; Eggertsson and Mehrotra,

2014; Eggertsson, Mehrotra and Robbins, 2019), heterogeneous agents with incomplete markets

(McKay, Nakamura and Steinsson, 2016; Bilbiie, 2020), or the fiscal theory of the price level

(Cochrane, 2017; McClung, 2021) to name just a few.

The source of the puzzle is the backward induction that agents (and the modeler) do to find

the path that endogenous variables must take to arrive at the announced future state of the

economy. Starting with the beliefs that must prevail when the announced policy terminates,

one walks expectations iteratively backwards in time through the structural equations. This

backward iteration implies an unstable dynamic in most New Keynesian models when monetary

policy is constrained by the zero lower bound (ZLB) on nominal interest rates. Inflation and

output beliefs diverge toward positive or negative infinity with each deduction, which generates

larger and larger jumps in these variables today, the farther the terminal date of the announced

policy. In other words, there is no smooth path from where agents believe the economy will be

in the future to where the economy is today in many modeled environments.

The search for a smooth path from some arbitrary set of beliefs to a specific rational expecta-

tion solution is not a new problem. The expectations literature, typified by Adaptive Learning

as in Evans and Honkapohja (2001), has studied this problem for decades. The problem is just

framed with time running in the opposite direction. Instead of asking how we go from some
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belief about the future back to today, this literature asks how, starting from some arbitrary

beliefs, we can arrive over time to a specific belief. We show that assessing the power of for-

ward guidance and studying the Expectational stability (E-stability) properties of a Rational

Expectations Equilibrium (REE) are essentially one and the same. Specifically, the notion of

Iterative Expectational stability (IE-stability) first proposed by Evans (1985) provides sufficient

conditions that allow one to determine if any model, or more precisely, any equilibrium of a

model is likely to predict puzzling behavior in response to a forward guidance announcement.1

The conditions allow for a direct diagnosis of the economic assumptions that are driving the

explosive beliefs across a wide variety of models and can be used for equilibrium selection.

We show that viewing the forward guidance puzzle through the lens of IE-stability provides a

clear economic interpretation for why the puzzle exists. IE-stability is a local stability condition

for the equilibrium dynamics of expectations. Stability depends on both the features of the

economy at the ZLB and the economy after liftoff. An REE fails to be IE-stable when, for

a given initial belief, endogenous variables of the economy respond more than one-for-one to

expectations. For example, if higher inflation expectations trigger a rise in inflation over and

above that implied by the expectation alone, then inflation and inflation expectations will

continue to diverge when agents are learning. For a forward guidance announcement this

dynamic happens in reverse. Agents contemplate some future belief about inflation in some

period T ∗ and ask what realized inflation rate in the previous period, T ∗ − 1, rationalizes that

belief. If it is an even higher inflation rate, then that implies inflation expectations in period T ∗−

2 should be higher and hence realized inflation in T ∗−2 is higher again. Repeating the deduction

over and over again leads to the unbounded response of inflation to the policy. This is exactly

what occurs in the New Keynesian model when monetary policy is constrained by the ZLB.

Higher inflation expectations lead directly to a lower real interest rate, which leads to higher

consumption, and then further increases in inflation and inflation expectations. This dynamic

repeats with every additional anticipated period of zero interest rates. Dampening or breaking

this feedback loop is what all forward guidance puzzle resolutions must do. By connecting

1IE-stability predates the more well-known concept of E-stability. Evans (1983), Evans (1985), and Evans
(1986) all propose iterative procedures as an equilibrium selection criterion, which Evans (1985) defined as
“Expectational Stability.” Later, Evans (1989) showed that this criterion shared features with the convergence
conditions for agents who engage in least squares learning studied in Marcet and Sargent (1989). Further
contrasts between the two approaches are discussed in Evans and Honkapohja (1992) and the current terminology
of E-stability and IE-stability dates back to Evans and Honkapohja (1994).
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IE-stability and forward guidance, we identify three (not mutually exclusive) categories of

resolution strategies that enhance or change the stability properties of models studied under

adaptive learning and which mitigate or solve the puzzle:

1. Over-discounting expectations: Adding assumptions that imply increased discounting of

the future relative to the standard representative agent model. Examples include myopia

or life-cycle dynamics where reduced planning horizons naturally decrease the weight

given to future events.

2. Predetermining expectations: Adding assumptions that introduce new state variables to

the standard representative agent model. Examples include sticky information models

where beliefs are explicit state variables or sunspot equilibria where some subset of ex-

pectations depend in part on some non-fundamental state.

3. History dependent policy: Assuming monetary or fiscal policy rules that explicitly depend

on the endogenous outcomes observed during the ZLB period. Examples include price

level targeting (with some caveats) and active fiscal policy regimes. Expectations of

retroactive policy adjustments after liftoff offset the impacts of forward guidance policy.

The first category of resolutions dampen the unstable dynamics in the model without altering

its reduced form such as in the Behavioral New Keynesian model of Gabaix (2020). Categories

two and three change the dynamics of expectations by introducing new state variables. The

third category follows from the fact that the forward guidance puzzle is always a two-regime

phenomenon. Studying a model with an interest rate peg is not prescriptive for whether a

forward guidance puzzle will occur without specifying the policy pursued after the peg is aban-

doned.

This categorization and connection to IE-stability provides a road map for where to look

for resolutions of the puzzle by appealing to the large body of knowledge of model features

that enhance expectational stability. It also distinguishes between resolutions to the forward

guidance puzzle that scale with the complexity of the model, i.e., increasing the number of state

variables, and indicates a proposed resolution’s potential robustness. For example, because

the first category of resolutions seek only to dampen the existing general equilibrium effects,

these types of resolutions are sensitive to parameter choices. In particular, we show that
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increasing the flexibility of prices by very small amounts in the basic Behavioral New Keynesian

model may undue the dampening implied by the over-discounting of expectations and bring

back the forward guidance puzzle. Consequently, solutions which rely on over-discounting in

simple models may not scale to larger and more quantitatively relevant applications. The

latter two resolution categories, though, are more robust. They seek to fundamentally change

the dynamics of expectations and their general equilibrium effects.

Connecting the forward guidance puzzle to IE-stability also sheds light on two additional

aspects of modeling zero interest rates and forward guidance announcements debated in the

literature. First, there is nothing special about monetary policy forward guidance and the ZLB

that generates this dynamic. Any equilibrium of a model that fails to meet our IE-stability

criteria may result in puzzling behavior for a forward guidance announcement of any kind.

For example, our IE-stability conditions are predictive for the forward fiscal guidance puzzle

explored by Canzoneri, Cao, Cumby, Diba and Luo (2018) or for when large positive/negative

impacts of announced disinflation arise such as in Ball (1994) and Gibbs and Kulish (2017).

Second, IE-stability and our framework show that the forward guidance puzzle is not a by-

product of indeterminacy as suggested by Carlstrom et al. (2015). It is well-known that E-

stability and determinacy are distinct concepts.2 In fact, in the class of models we consider

the existence of multiple stationary equilibria implies the existence of sunspot solutions that

satisfy the IE-stability condition and therefore do not exhibit the forward guidance puzzle. In

these puzzle-free equilibria, extraneous sunspots predetermine expectations in a manner that

counteracts the effects of the policy announcements.3

We are not the first to point out that indeterminacy can be exploited to resolve the forward

guidance puzzle. Cochrane (2017) shows the existence of multiple equilibria at the ZLB in a

standard New Keynesian environment of which many do not exhibit the features of the forward

guidance puzzle. What we provide in addition to this insight is a framework for equilibrium

selection that scales to a broad class of models. Our method can isolate the individual economic

assumptions that contribute to the puzzle allowing for puzzle resolutions that are derived from

2The connection/disconnection between determinacy and E-stability has been widely studied, for example,
in McCallum (2007) and Bullard and Eusepi (2014). Ellison and Pearlman (2011) also extends this analysis to
IE-stability.

3Note that indeterminate models generically admit both minimal state variable (MSV) solutions and sunspot
solutions that depend on extraneous sunspot shocks. This paper considers both solution types; section 3
considers the MSV solution(s) of determinate and indeterminate models, whereas section 5 constructs puzzle-
free sunspot equilibria.
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the micro-foundations of the model rather than by selecting for the macro predictions one finds

most palatable as in Cochrane’s framework.

We provide a simple example of the connection between the forward guidance puzzle and

IE-stability in the next section. Section 3 defines the forward guidance puzzle in a general way

and shows how IE-stability can characterize its existence. Section 4 applies IE-stability to a

general New Keynesian model that nests the models of Gabaix (2020) and Bilbiie (2020) to

explore puzzle resolutions that rely on over-discounting of expectations and the robustness of

these modeling strategies to resolve the forward guidance puzzle.

We then explore two extensions. In section 5, we provide an extension of the indeterminate

solution techniques of Bianchi and Nicolò (2021) to anticipated structural change. We show how

these solutions may be analyzed using IE-stability in the same way as determinate solutions.

We use these techniques to characterize when the forward guidance puzzle exists in the standard

three equation New Keynesian model for both unique RE solutions and non-unique sunspot

RE solutions. We show that IE-stability is a necessary and sufficient condition in the model for

ruling out the forward guidance puzzle in the determinate case, and that for a class of sunspot

solutions, IE-stability is always satisfied, which rules out the puzzle. Lastly, we show that the

sunspot resolution of the forward guidance puzzle scales to the medium-scale model of Smets

and Wouters (2007) estimated on data from the United States.

Section 6 extends the IE-stability analysis to models with Markov-switching policy and

explores an application to history dependent monetary and fiscal policies. Cochrane (2017)

and McClung (2021) show that expectations of active fiscal policy and passive monetary policy

resolves the forward guidance puzzle. This policy introduces history dependence at the ZLB

because a promise to fix the path of the nominal interest rate affects the real value of debt, which

in turn influences inflation and inflation expectations beyond the forward guidance horizon.

Expectations of policy choices after liftoff then restrain inflation when the economy is at the

ZLB, eliminating the puzzle. We illustrate this in a standard modeling environment with

exogenous Markov-switching between active and passive fiscal policy regimes upon liftoff from

the ZLB. Importantly, IE-stability and determinacy of an REE at the ZLB in this model do not

overlap for a wide range of the plausible parameterizations, which illustrates that IE-stability

is the relevant criteria to study when assessing the power of forward guidance.
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Finally, leveraging the Markov-switching machinery, we study forward guidance for a central

bank that pursues price level targeting upon liftoff. We show that price level targeting on its own

mitigates but does not eliminate all aspects of the forward guidance puzzle. We introduce an

exogenous possibility that policymakers might renege on the promised forward guidance policy

in this scenario. We show that expectations of reneging on policy, or alternatively imperfect

central bank credibility, resolves the puzzle.

Related Literature. There are many other papers that solve or at least mitigate the for-

ward guidance puzzle using one of the three resolutions mechanisms that IE-stability identifies.

Additional examples of resolutions that rely on history dependent policy to resolve the puzzle

are proposed by Bilbiie (2018) and Diba and Loisel (2021) who employ price level targeting

and endogenous money growth rules, respectively. Additional examples of resolutions that rely

on predetermining expectations are proposed by Kiley (2016) and Gorodnichenko and Sergeyev

(2021) who use sticky information and an exogenous zero lower bound on inflation expecta-

tions, respectively; and Eggertsson and Mehrotra (2014) and Gibbs (2018) who each use a

downward rigidity in nominal wages. Additional papers that rely on bounded rationality and

information frictions are Angeletos and Sastry (2021), Eusepi, Gibbs and Preston (2022), and

Evans, Gibbs and McGough (2022). The former paper relies on either imperfect information

or myopia/bounded rationality - Angeletos and Huo (2021) show an equivalence result for the

two deviations from full information rational expectations - while the latter two papers rely on

adaptive learning and forms of level-k reasoning.

The novel sunspot resolution to the forward guidance puzzle that we derive relies heavily on

the solution methods of Cagliarini and Kulish (2013) and Kulish and Pagan (2017) combined

with the methods of Bianchi and Nicolò (2021) for solving for sunspot solutions. We generalize

the Bianchi and Nicolò (2021) method to capture the zero lower bound and show how to adapt

it to the reduced form of Binder and Pesaran (1997).

2 Insights from a Simple Model

A RE solution to a forward guidance announcement and the study of the same model under

adaptive learning are in practice identical exercises with one exception: time’s arrow runs
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Table 1: Expectations and Anticipation

RE AE

Unanticipated (T a = T ∗) πt =

{
− 1
φ
ī if t = T a

0 if t < T a
πt =

{
−
(

1
φ

)−Ta+t+1

ī if T a ≤ t

0 if t < T a

Anticipated (T a < T ∗) πt =

{
−
(

1
φ

)T ∗−t+1

ī if T a ≤ t ≤ T ∗

0 if t < T a
πt =

{
− 1
φ
ī if t = T ∗

0 if t < T ∗

Notes: Solutions to one-time unanticipated and anticipated monetary policy shocks, ī < 0, under rational
expectations (RE) and adaptive expectations (AE).

in the opposite direction in each case. To illustrate, compare the equilibrium outcomes of an

unanticipated versus anticipated monetary policy shock when agents have either RE or adaptive

expectations (AE), where ÎEtπt+1 = πt−1.

Consider these shocks in a simple Fisher model

it = ÎEtπt+1, (1)

where i, π are deviations from steady state (i.e. i = π = 0 in steady state), and ÎE denotes

either RE or AE. The central bank sets the nominal interest rate i according to a policy rule:

it = ī + φπt, where ī is a deterministic shock that is zero unless stated otherwise. Inflation in

this economy evolves according to

πt = −1

φ
ī+

1

φ
ÎEtπt+1.

The usual forward guidance thought experiment is to compare the response of inflation to a

one-time change in ī < 0 while varying the timing of its implementation, t = T ∗, and timing

of its announcement to the public, t = T a. An unanticipated policy is one where T ∗ = T a and

an anticipated or forward guidance policy is one where T a < T ∗. The response of inflation to

a shock is different depending on how policy is specified and the expectations assumption.

Table 1 gives the solution paths of inflation to a one-time monetary policy shock, ī < 0,

that is either unanticipated or anticipated under RE and AE over a period of interest. The AE

solution is calculated by substituting in ÎEtπt+1 = πt−1 and rolling the economy forward in time.

The RE solution for the anticipated shock is calculated by backward induction. Starting in

t = T ∗, IEtπt+1 = 0 is imposed and the economy is rolled backwards in time. The two solutions

are mirror images of one another, where simply by swapping T a for T ∗, i.e., reversing time’s
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arrow and the expectations assumption, we can recover the exact same solution paths.

The puzzling nature of anticipated monetary policy is transparent here under RE. The effect

of an anticipated monetary policy shock on inflation in period T a is a function of ∆p = T ∗−T a.

As ∆p increases, inflation in T a either tends towards zero, remains fixed at ī, or diverges to

positive/negative infinity depending on the value of |φ−1|. If |φ−1| > 1, then we observe the

forward guidance puzzle. Specifically, using the terminology of Farhi and Werning (2019),

inflation’s response to the shock exhibits an anti-horizon effect. Rather than the impact of the

shock at the time of the announcement decreasing with the horizon of the policy, the opposite

occurs.

The same condition identifies whether inflation will return to steady state under AE follow-

ing the shock. Therefore, a divergence in inflation in response to the shock under AE diagnoses

the anti-horizon effect of inflation, i.e., the forward guidance puzzle, when the same shock is

anticipated under RE. We show in the next section that this logic scales to much more com-

plicated and quantitatively relevant macroeconomic models. It requires the more sophisticated

machinery of IE-stability analysis to determine the conditions under which the puzzle emerges,

but the same intuition of this AE example holds.

Of course, |φ−1| < 1 perfectly coincides with the condition for the existence of a unique REE

in this model. Therefore, the determinacy condition is also predictive for the puzzle in this

example. However, as we will show, this is just a coincidence. Determinacy or indeterminacy is

a misleading criterion by which to assess whether puzzling predictions will occur. For example,

consider the case where φ = 1 in the Fisher model. Under this assumption, there is no anti-

horizon effect. Forward guidance policy has a fixed impact on inflation in period T a. The

model is indeterminate. But the most extreme predictions of the forward guidance puzzle of

an unbounded response as ∆p → ∞ are absent. In general, appealing to indeterminacy of an

RE equilibrium is only predictive for puzzling responses of endogenous variables to anticipated

events under strict assumptions, which IE-stability reveals.

3 Forward guidance in structural models and IE-stability

The connection between IE-stability and the forward guidance puzzle is obtained by studying

RE models in the form considered by Evans and Honkapohja (2001). It is straightforward
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to transfer the insights to more general formulations. To this aim, consider linear structural

models that take the following form

yt = Γ(θ) + A(θ)yt−1 +B(θ)IEtyt+1 +D(θ)ωt (2)

ωt = ρ(θ)ωt−1 + εt (3)

where yt is a n× 1 vector of endogenous variables with m ≤ n jump variables, ωt is l× 1 vector

of exogenous variables, εt is a vector of exogenous white noise innovations, and θ is a vector of

deep parameters that characterize the behavior of agents and the policymakers.4 Rearranging

Equations (2) and (3)


IEtyt+1

yt

wt

 = J +M


yt

yt−1

wt−1

 , (4)

it is well-known that a unique bounded solution exists provided that the number of eigenvalues

of M that are outside the unit circle equals m. When this condition is satisfied, the unique

stable minimum state variable (MSV) solution may be written as

yt = ā(θ) + b̄(θ)yt−1 + c̄(θ)ωt, (5)

with the solution’s dependence on a specific parameterization denoted by θ and which has a

non-stochastic steady state denoted by yss. When this condition is not satisfied such that there

are fewer eigenvalues outside the unit circle than m, a continuum of stationary solutions exists

of which one class of solutions is given by5

yt = ā(θ) + b̄(θ)yt−1 + c̄(θ)ωt + f̄(θ)vt, (6)

where vt is an arbitrary martingale difference sequence (MDS) and f is an arbitrary matrix

that may also depend on θ.

4Unless specified, we assume all relevant inverses exist to do the required calculations.
5Chapter 10 of Evans and Honkapohja (2001) offers a complete characterization of the full set of sunspot

solutions of models of the form (2).
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3.1 RE solutions to forward guidance announcements

For the purposes of exploring forward guidance in a general framework, we define a forward

guidance announcement, its impact, and the forward guidance puzzle as follows:

Definition: Forward Guidance Announcement A Forward Guidance Announcement

(FGA) is a tuple {θTa , θT ∗} such that T ∗ − T a = ∆p > 0, where θTa is the vector of struc-

tural parameters that governs the economy from the time of the announcement, T a, until time

T ∗ − 1. θT ∗ is the vector of structural parameters that governs the economy at time t ≥ T ∗.

A FGA defines a sequence of structural equations

yt =

 Γ(θTa) + A(θTa)yt−1 +B(θTa)IEtyt+1 +D(θTa)ωt if T a ≤ t < T ∗

Γ(θT ∗) + A(θT ∗)yt−1 +B(θT ∗)IEtyt+1 +D(θT ∗)ωt if t ≥ T ∗
. (7)

Rational solutions to the system of equations are time-varying coefficient analogues to the usual

solutions (5) and (6). Unique or determinate FGA solutions take the form of

yt = āt(θt) + b̄t(θt)yt−1 + c̄t(θt)ωt. (8)

Indeterminate FGA solutions also have time-varying parameters, and one class of these solutions

can be expressed as

yt = āt(θt) + b̄t(θt)yt−1 + c̄t(θt)ωt + f̄t(θt)vt (9)

where vt is an arbitrary MDS.

Definition: Impact The impact of an FGA is defined as |yss − IE [yTa ] |, where IE [yTa ] is

the unconditional expectation of the vector of endogenous variables at time t = T a and yss is

the steady state of the model when t < T a.

Definition: Forward Guidance Puzzle An FGA {θTa , θT ∗} is said to exhibit the forward
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guidance puzzle if its impact is unbounded (|yss − IE [yTa ] | → ∞) as ∆p →∞.

There is no standard definition for the forward guidance puzzle. Our definition tries to capture

three specific aspects of the puzzle in a general way: the effect of policy at the time of the

announcement (impact), how that policy’s impact grows as its implementation date is pushed

farther into the future, and that the impact is independent of the realizations of the exogenous

shocks. In other words, the effect is not a function of good luck or bad luck, but a direct effect

of a credible policy promise. Our definition is agnostic about the form that the policy takes in

the model. We are allowing any parameters to change as a result of the policy announcement.

We place only two constraints on FGA policies for clarity, which can be generalized.

First, we assume elements of εt are not included in the θi’s. Anticipated shocks such as

monetary policy shocks are modeled as temporary changes in the intercept of the policy rule

rather than known realizations of ε in the future. Second, FGAs are defined as only consisting

of two regimes. Assessing the contemporaneous impact of any FGA can always be cast as a

two-period problem. For example, the standard forward guidance thought experiment typically

has three parts:

1. a suspension of active policy for some duration ∆p

2. a one-time anticipated monetary policy shock occurring in period T ∗

3. active policy resuming thereafter.

The suspension of active policy, the policy shock (a change in the intercept of the policy

rule in our formulation), and the resumption of policy are three separate regimes that can be

represented by three different θi’s. However, what matters for assessing the impact of an FGA

is the θTa regime and the solution that prevails in period t = T ∗. If there are additional regimes,

that information becomes encoded in the θT ∗ solution. Once the solution at time T ∗ is known,

all that matters for assessing the forward guidance puzzle is its relationship to the T a regime.

In this way, more complicated FGAs may be cast into a two-regime problem for the purposes

of assessing its impact.

3.1.1 FGA solutions
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The most common strategy for obtaining the RE solution to an FGA is to use the method of

undetermined coefficients combined with backward induction. This is the approach taken by

Eggertsson and Woodford (2003) to study optimal policy at the ZLB. It is also the approach

that underpins the solution method for anticipated structural changes in Cagliarini and Kulish

(2013) and Kulish and Pagan (2017). Similar approaches are also employed in Cho and Moreno

(2011) and to solve for RE solutions of Markov-switching DSGE models as in Baele, Bekaert,

Cho, Inghelbrecht and Moreno (2015) and Cho (2016).

Given an FGA {θTa , θT ∗}, the method proceeds as follows.6 First, assume there exists a

unique bounded solution for the θT ∗ regime when t ≥ T ∗ that takes the form of Equation

(5) (the indeterminate case is discussed separately). We can recover this solution from the

structural equations (2) by the method of undetermined coefficients, where the expectation of

yt+1 in time t is given by

IEtyt+1 = a+ byt + cρ(θT ∗)ωt (10)

and where a, b, and c are unknown. Substituting equation (10) into equation (2), we have

yt = (I −B(θT ∗)b)−1 (Γ(θT ∗) +B(θT ∗)a+ (B(θT ∗)cρ(θT ∗) +D(θT ∗))ωt + A(θT ∗)yt−1) . (11)

Equating equation (11) with (5), we construct the following equivalences

a = (I −B∗b)−1 (Γ∗ +B∗a) (12)

b = (I −B∗b)−1A∗ (13)

c = (I −B∗b)−1 (B∗cρ∗ +D∗)) (14)

where to simplify notation we write B∗ = B(θT ∗) and Ba = B(θTa), etc. These equations define

the solution for the model when t ≥ T ∗ and the solution can be recovered using any number of

standard techniques.

In period t = T ∗ − 1, the MSV solution again takes the same form as equation (5). The

6We assume that the inverse of (I −A(θTa)B(θTa)) exists in order to construct the solution.
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expectation of yt+1 at time t, however, is no longer unknown. It is given by

IEtyt+1 = ā(θT ∗) + b̄(θT ∗)yt + c̄(θT ∗)ρaωt,

where ā(θT ∗), b̄(θT ∗), and c̄(θT ∗) represent the MSV solution implied by θT ∗ . Substituting

expectations into equation (2) and equating with equation (5), we now have the following

equivalences

a =
(
I −Bab̄(θT ∗)

)−1
(Γa +Baā(θT ∗))

b =
(
I −Bab̄(θT ∗)

)−1
Aa

c =
(
I −Bab̄(θT ∗)

)−1
(Bac̄(θT ∗)ρa +Da) ,

which defines the RE solution for t = T ∗ − 1. Continuing to work backwards in time, the RE

solution for the FGA, equation (8), may be derived recursively. To illustrate, define j as the

number of periods remaining until T ∗ (i.e. j = T ∗−t), which allows us to write the RE solution

as

āj = (I −Bab̄j−1)−1 (Γa +Baāj−1) (15)

b̄j = (I −Bab̄j−1)−1Aa (16)

c̄j = (I −Bab̄j−1)−1 (Bac̄j−1ρa +Da) (17)

where ā0 = ā(θT ∗), b̄0 = b̄(θT ∗), and c̄0 = ā(θT ∗).

From this derivation it is straightforward to arrive at the following proposition.

Proposition 1 The rational expectations solution for the FGA {θTa , θT ∗} is unique if and

only if there is a unique solution to equation (2) for θT ∗.

The proof is in the appendix and follows Cagliarini and Kulish (2013), who study these solutions

in a more general environment. The intuition is that if there is a unique solution for θT ∗ , then

Equations (15), (16), and (17) trace out a unique trajectory from that starting point.

What if there are multiple solutions for θT ∗? An indeterminate θT ∗ regime with n lagged

13
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endogenous variables can admit as many as 2n choose n MSV solutions. Choosing one of

those solutions as a starting point, we can iterate on this mapping to recover the FGA solution

associated with that starting point. Additional steps must be taken though if the solutions do

not take an MSV form, which we discuss in section 5.

3.2 Connection to IE-stability

Equations (15), (16), and (17) should look familiar to anyone who has studied a model under

adaptive learning. This is because under adaptive learning we typically start with the assump-

tion that agents form time t expectations using estimates of the MSV RE solution based on all

data up to time t− 1 such that

IEtyt+1 = at−1 + bt−1yt + ct−1ρωt.

As before, beliefs are substituted into equation (2) to find the actual law of motion for the

economy

yt = (I −Bbt−1)−1 (Γ +Bat−1 + (Bct−1ρ+D)ωt + Ayt−1) .

The actual law of motion reveals the same mapping from agents’ beliefs about the MSV RE

solution coefficients, Φt−1 = (at−1, bt−1, ct−1), to the actual equilibrium coefficients as derived

previously. This mapping is known as the T-map, where

T (Φt−1) =
(
(I −Bbt−1)−1 (Γ +Bat−1) , (I −Bbt−1)−1A, (I −Bbt−1)−1 (Bct−1ρ+D)

)
.

The T-map summarizes how beliefs map into next period’s outcomes, which in turn are used to

update beliefs. We can express (15), (16), and (17) equivalently as Φt = (at, bt, ct) = T (Φt−1),

or:

at = (I −Bbt−1)−1 (Γ +Bat−1)

bt = (I −Bbt−1)−1A

ct = (I −Bbt−1)−1 (Bct−1ρ+D) .

14
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Therefore, one may view FGA solutions as iterating on a T-map. The forward guidance puzzle

occurs when the T-map is unstable, i.e. when some elements of Φt grow without bound as we

iterate on the above equations. Diagnosing the forward puzzle is equivalent to studying the

stability of an equilibrium of the T-map from a given initial condition.

The T-map is nonlinear. Global stability and instability results for nonlinear difference

equations are difficult to obtain without introducing more structure on the problem. In the

adaptive learning literature, progress is made by considering local stability. Locally stable

T-maps of this form are called Iteratively E-stable (IE-stable):

Definition: IE-Stability A fixed point of the T-map, Φ̄, is said to be Iteratively E-stable if

for all Φ0 in a neighborhood of Φ̄,

ΦN → Φ̄

as N →∞.

Chapter 5 of Evans and Honkapohja (2001) provides a discussion of the relevant neighbor-

hood and related stability and topological concepts. Evans and Honkapohja (2001) also show

that the following conditions determine whether a given Φ̄ is IE-stable.

Theorem 1 (Reformulation of 10.3 Evans and Honkapohja, 2001) An MSV solution

ā, b̄, and c̄ is IE-stable if all eigenvalues of

DTa(ā, b̄) = (I −Bb̄)−1B

DTb(b̄) =
[
(I −Bb̄)−1A

]′ ⊗ [(I −Bb̄)−1B
]

DTc(b̄, c̄) = ρ′ ⊗
[
(I −Bb̄)−1B

]
have modulus less than 1. The solution is not IE-stable if any of the eigenvalues have modulus

larger than 1.

To translate Theorem 1 to FGA solutions, we have the following proposition.

Proposition 2 A FGA {θTa , θT ∗} does not exhibit the forward guidance puzzle if
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1. Φ̄(θTa) exists

2. Φ̄(θTa) is IE-stable

3. Φ0(θT ∗) exists and is in the appropriate neighborhood of Φ̄(θTa)

The proof of the proposition is in the appendix and follows directly from Theorem 1, which

leverages well-known stability results for fixed points of dynamic systems.

Proposition 2 provides sufficient conditions which can be used in a wide class of structural

models and FGAs to rule out the forward guidance puzzle. The conditions are often necessary

and sufficient for applications that study specific forward guidance policies in specific models.

The relevant conditions in Proposition 2 for most applications are IE-stability and the notion

that the terminal regime solution needs to be close in some sense to Φ̄(θTa). The latter condition

arises because the T-map is non-linear, and some applications may involve multiple fixed points.

Therefore, failure of the IE-stability condition for some Φ̄(θTa) does not necessarily rule out the

existence of a Φ0(θT ∗) for which the solution recursion converges to some other stable point.

The appropriate neighborhood condition is not just a technical one. It reveals a useful

distinction between announcements that imply modest versus major policy changes in the

future. An announcement about a significant future change in the policy framework can imply

a terminal regime solution that does not lie in the appropriate neighborhood of a given Φ̄(θTa).

For example, if the terminal regime solution adds or decreases the number of state variables

on which expectations depend relative to that implied by the announcement regime solution

on its own, then the relevant fixed point of the T-map that governs stability may change.

Consequently, IE-stability of a specific Φ̄(θTa) may not predict what happens under all feasible

FGAs with the same θTa . The properties of the model for a specific Φ̄(θTa) regime are predictive

for the forward guidance puzzle if the announcement entails modest changes in the policy

framework so the terminal regime solution meets condition 3, or Φ̄(θTa) is unique such as when

the T-map is linear.

Corollary When there are no lagged endogenous variables in an economy, an FGA {θTa , θT ∗}

does not exhibit the forward guidance puzzle if Φ̄(θTa) exists and is IE-stable.

Two examples in a Fisher model of inflation concisely illustrate these points:
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3.2.1 Example 1 (sufficient vs. necessary and sufficient)

Consider diagnosing the forward guidance puzzle in the Fisher model of section 2,

it = IEtπt+1

for two different FGAs:

FGA 1: it =

 φaπt T a ≤ t < T ∗

φ∗πt t = T ∗
FGA 2: it =

 φaπt T a ≤ t < T ∗

ī+ φ∗πt t = T ∗

where φa < 1 < φ∗, and ī = 0 for all t > T ∗. FGA 1 is an announced change in the central

bank’s reaction function. FGA 2 is an announced change in the reaction function plus a one-

time shock (̄i 6= 0 only when t = T ∗). Both FGAs are admissible under our general definition

of a forward guidance announcement.

In the absence of stochastic shocks and lagged endogenous state variables, the T-map for

both FGAs is given by the following univariate system

āj =
1

φa
āj−1,

where ā0 = 0 in FGA 1 and ā0 = −ī/φ∗ in FGA 2. Because there are no lagged endogenous

variables, the Corollary to Proposition 2 applies and we may study the θTa regime in isolation.

The T-map has a unique fixed point: ā(θTa) = 0. IE-stability requires |φa| > 1, which is not

satisfied by assumption. The equilibrium solution for inflation for both FGAs is given in Table

1, with ī = 0 for FGA 1.

For FGA 1, IE-stability is not a necessary condition for ruling out the puzzle. Announced

changes to the reaction coefficient on inflation in the interest rate rule do not imply a change

in inflation for any ∆p. The failure of IE-stability in this example is not prescriptive for the

forward guidance puzzle. For FGA 2, IE-stability is necessary and sufficient for ruling out and

predicting the forward guidance puzzle.

The second FGA example reflects the usual concern that is expressed with the effects of

forward guidance. The first FGA example is a special case. Proposition 2 is useful here because
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it provides the sufficient conditions to rule out the possibility that a specific FGA under study

corresponds to a knife edge case. Simulating the first FGA and concluding that the FGA is

puzzle free is not a very robust conclusion about forward guidance policy in general in this

scenario. Satisfying IE-stability, however, does rule out puzzling behavior for a broader set of

forward guidance policies.

3.2.2 Example 2 (appropriate neighborhood of Φ̄(θTa))

To illustrate how the terminal regime matters for determining the puzzle, we now consider a

significant change in policy in the Fisher economy, which replicates Cochrane (2017)’s resolution

of the puzzle in our framework. There is an implicit assumption in this toy economy that there

is a government issuing nominal debt. That nominal debt is what gives rise to the nominal

interest rate that the central bank manipulates to implement policy. The Fisher economy is

implicitly described by three equations:

it = φπt + ī

it = IEtπt+1

bt = δbt−1 + it − β−1πt,

where the last equation summarizes the government’s budget constraint and fiscal policy rule

(more detail is given in the Appendix 2). The parameter δ encodes the government’s policy

towards stabilizing debt. When δ < 1, the government enacts a fiscally responsible, Ricardian

policy and debt dynamics are decoupled from inflation dynamics. This is why we can write the

equilibrium for inflation without reference to fiscal policy previously. However, that is not the

case if the government always engages in a debt-destabilizing or “active” fiscal policy, which

implies δ > 1.

Now consider FGAs in this economy when both FGAs include forward guidance about a

future one-time interest rate shock when fiscal policy is active and monetary policy is passive

in the θTa regime. Specifically, assume that the monetary policy reaction function is 0 < φ =

φa < 1 with ī 6= 0 in t = T ∗ − 1 and otherwise ī = 0, and fiscal policy is δ = δa > 1 for
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T a ≤ t < T ∗. The system for T a ≤ t < T ∗ can be expressed as:

yt = Γa + Aayt−1 +BaIEtyt+1

where y = (π, b)′ and

Ba =

 1
φa

0

1− 1
βφa

0

 Aa =

0 0

0 δa


and Γa = (− ī

φa
, ī
βφa

)′ if t = T ∗ − 1, otherwise Γa = 02×1. Because ī = 0 when t = T a, the θTa

regime admits two MSV solutions of the form: yt = b̄(θTa)yt−1, where, ā(θTa) = 02×1 and

b̄(θTa) =

0 φa−δa
φa−β−1

0 φa

 or b̃(θTa) =

0 0

0 δa

 .

One can verify through explicit computation that the largest eigenvalues of the first solution for

DTa(ā, b̄) and DTb(b̄) are 1/δa < 1 and φa/δa < 1, respectively. Hence, Φ̄(θTa) = (02×1, b̄(θTa))

is IE-stable. The IE-stability condition for the second solution is the usual one: φa > 1.

Therefore, it is not IE-stable.

Which IE-stability condition is predictive for the existence of the forward guidance puzzle?

That depends on what is assumed for the θT ∗ regime. If φ = φ∗ < 1 and δ = δ∗ > 1 for t ≥ T ∗

is announced at t = T a, then the puzzle is absent. These assumptions select a unique Φ0(θT ∗)

that is in the appropriate neighborhood of the IE-stable Φ̄(θTa) with active fiscal policy. If

instead it is announced that φ = φ∗ > 1 and δ = δ∗ < 1 for t ≥ T ∗, then condition (3) fails

for the IE-stable θTa solution and the puzzle emerges. We return to the usual Fisher economy

studied in example 1.

In both cases there is a unique FGA equilibrium (by Proposition 1) and both economies

feature passive monetary policy in the θTa regime. The intuition for the different outcomes is

that one terminal regime implies history dependence in policy and the other does not. Active

fiscal policy implies that inflation always resolves long run fiscal imbalances and therefore

equilibrium inflation always depends on the history of debt. Under the alternative assumption,

inflation does not play a debt-stabilizing role, as δ∗ < 1 implies fiscal policy resolves any fiscal
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imbalances from T ∗ on, and φ > 1 implies that inflation is returned to steady state following the

completion of the policy. There is no history dependence connecting the terminal regime to the

announcement regime, so the solution recursion fails to converge to the IE-stable equilibrium

in the limit. In effect, we are pushed back into the world of example 1 despite the temporary

detour into active fiscal policy in the θTa regime.

The example also highlights a key insight from Proposition 2 that studying the θTa regime

in isolation is misleading. The θTa regime only provides information about announcements

involving future regimes that are similar to the regime in place at the time of announcement.

Practitioners should expect condition (3) to be satisfied if the θTa and θT ∗ regimes imply

similar economic structures (e.g. the same state variables), otherwise it must be checked.7 In

simple models, checking can be done through direct computations as in this example. In more

complicated settings, iterating on the T-map from the initial condition may be required.

3.3 Discussion

Connecting IE-stability to the emergence of the forward guidance puzzle naturally implies the

three (not mutually exclusive) categories of resolutions described in the introduction. E- and

IE-stability conditions measure the strength of the feedback between expectations and equi-

librium outcomes. Reducing expectational feedback by over-discounting the future enhances

expectational stability and may – as we show in the next section – eliminate the forward guid-

ance puzzle. Likewise, it is well-known in the learning literature that changing the set of state

variables in a model may introduce new fixed points of the T-map with different E-stability

properties (see Chapter 8 of Evans and Honkapohja, 2001). Consequently, altering the set of

state variables that expectations depend on in equilibrium – “predetermining expectations” –

can produce IE-stable fixed points of the T-map that resolve the puzzle. Finally, the learning

literature has found that history dependence in policy increases the regions of expectational

stability in models (see, for example, Bullard and Mitra, 2007 or Eusepi and Preston, 2011).

Any policy that improves expectational stability will have similar effects on mitigating the

forward guidance puzzle.

7In many applications, including example 2, when φ∗ > 1 > δ∗, Φ0(θT∗) and Φ̄(θTa) imply a change in
the set of state variables affecting equilibrium dynamics after T ∗. Such applications are more likely to involve
violations of condition (3).
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4 Application: Over-discounting in a general New Keynesian model

In this section, we show how to use IE-stability to diagnose the forward guidance puzzle in a

general New Keynesian environment:

xt = MIEtxt+1 − σχ (it − IEtπt+1) (18)

πt = M fβIEtπt+1 + κxt (19)

where the usual system of equations is augmented by three additional parameters: M , χ,

and M f to introduce over-discounting. These parameters stand in for bounded rationality,

heterogeneous agents, or incomplete market assumptions. For example, when 0 < M < 1,

0 < M f < 1, and χ = 1, the model nests the Behavioral New Keynesian (BNK) models of

Gabaix (2020). When 0 < M < 1, M f = 1, and χ 6= 1, the model captures the Tractable

Heterogeneous New Keynesian (THANK) assumptions of Bilbiie (2018). A key finding from

these modified models is that they solve the forward guidance puzzle under some preferred

parameterization assuming that the economy reverts to a Taylor-type rule upon liftoff.

To replicate these papers’ findings using IE-stability, consider the following FGA

it =


0 if T a ≤ t < T ∗

ī if t = T ∗

φππt if t > T ∗

, (20)

where φπ > 1 to ensure a unique solution. Current inflation targeting implies no history

dependence so the Corollary to Proposition 2 applies and we can study the θTa regime in

isolation. The T-map for the FGA is given by

T (φ) = Γa +Baφ.

There exists a unique fixed point of the T-map, Φ̄(θTa), and the relevant eigenvalues governing

IE-stability are

λ1,2 =
1

2

(
κσχ±

√
(κσχ+M + βM f )2 − 4βMM f +M + βM f

)
.
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IE-stability requires the largest eigenvalue to be less than one in absolute value.

Figure 1 plots the largest eigenvalue identified by IE-stability when M , M f , χ, or κ are

varied. Each line represents a different parameterization of the model. The black line corre-

sponds to the standard model with M = M f = χ = 1. The red dotted line corresponds to

the preferred calibration of Gabaix (2020) with M = 0.85, M f = 0.8, and χ = 1. The blue

dashed line corresponds to a THANK model with a calibration to match features of the model

of McKay et al. (2016) with M = 0.97, M f = 1, and χ = 0.843 in the baseline case. Lastly, to

capture that M and χ are linked in the THANK model, we solve for the fiscal redistribution

that is implied for each considered value of χ, while holding all other parameters constant, and

use it to calculate the corresponding M . We then use the χ and the corresponding value of M

when solving for the largest eigenvalue in the χ plot. We repeat the same exercise when we

vary M to find the implied χ parameter.8 The remaining parameters are β = 0.99, κ = 0.11

and σ = 0.2 to match Gabaix (2020).

IE-stability reveals three points of interest. First, the forward guidance puzzle is a robust

feature of the standard New Keynesian model when the terminal policy regime is a Taylor rule

with φπ > 1. Changing a single parameter is insufficient to eliminate the puzzle when the

remaining parameters are held at standard values. Second, varying χ and M alone is often

not sufficient to rule out the forward guidance puzzle. This result is an example of what Farhi

and Werning (2019) call incomplete-markets irrelevance for the puzzle. And finally, all of these

forward guidance resolutions are fragile in the sense that there are plausible parameterizations

of the THANK and the BNK model that do not solve the puzzle. Resolving the puzzles in

both cases is heavily dependent on a flat Phillips curve. Therefore, solutions that rely on these

mechanisms are not robust in the sense that they fail to resolve the forward guidance puzzle

for some reasonable assumptions about the degree of price rigidity in the economy.

5 Extension I: Indeterminacy and Sunspot FGA solutions

In the discussions up to this point, we have studied unique FGA solutions. Environments

in which monetary policy is passive or constrained by the ZLB indefinitely admit multiple

8In the THANK model, M = 1 + (γ − 1) (1−s)
(1−γλ) and χ = 1−λ

1−γλ , where λ = 0.21 is the proportion of hand-

to-mouth consumers in the economy, s = 0.96 represents a measure of market incompleteness, and γ represents
the degree of fiscal redistribution in the model, which we set to 0.3 when held constant.
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Figure 1: IE-stability Exploration
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Notes: Largest eigenvalue identified by IE-stability conditions. A value above one indicates the presence of the
forward guidance puzzle. The black line shows the standard parameterization of the model, the blue dashed
line shows the THANK parameterization of the model, the red dotted line shows BNK parameterization of the
model. Specific parameter values for each line are given in the text.
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equilibria. In this section, we show how to derive sunspot FGA solutions and assess their IE-

stability. Sunspots introduce new state variables on which expectations may depend. Therefore,

sunspots can predetermine expectations and resolve the puzzle. We apply our methods to small

and medium-scale New Keynesian models to show that sunspot solutions can resolve the forward

guidance puzzle.

5.1 Modeling indeterminacy at the ZLB

Indeterminate solutions to the general model given by (2) and (3) have a different functional

form than the MSV solution.9 This requires us to augment our FGA solution technique. To

illustrate the complication, consider sunspot solutions of the form (6), which must satisfy the

following equivalences

(I −B(θ)b) a = Γ(θ) +B(θ)a (21)

(I −B(θ)b) b = A(θ) (22)

(I −B(θ)b) c = B(θ)cρ(θ) +D(θ) (23)

(I −B(θ)b) f = 0n. (24)

A non-zero solution for f implies (I −B(θ)b) is singular. Inverting the matrices required to

construct the recursion studied in the previous section is not feasible.

To overcome this issue, we use the method proposed by Bianchi and Nicolò (2021) (referred

to as BN for the remainder of the paper) to augment the model with auxiliary equations that

allow us to solve for a specific sunspot solution of our choosing and express the VARMA(p,q)

sunspot solutions as a VAR(1) solution with the same reduced form as equation (5). With this

reduced form in hand, it is straightforward to produce the same recursions - equations (15),

(16), and (17) - studied previously, where we can apply IE-stability.

To this aim, recall that m denotes the number of jump variables in the system of equations

under study. Let nf < m be the number of eigenvalues outside the unit circle recovered from

the matrix M in equation (4) such that the model is indeterminate. Define k as the degree

9For example, an indeterminate model with VAR(1) MSV solutions admits VARMA(2,1) indeterminate
solutions that depend on extraneous MDS sunspot shocks. Evans and McGough (2011) show that sunspot
solutions admit both a “general form” representation and a “common factor” representation and it is possible
to move between the representations.
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of indeterminacy such that k = m − nf . Following BN, we append the following auxiliary

equations to the model:

st =



1
α1

0 . . . 0

0 1
α2

. . . 0

... 0
. . .

...

0 . . . 0 1
αk


st−1 +



x1,t − IEt−1x1,t

x2,t − IEt−1x2,t

...

xk,t − IEt−1xk,t


−



v1,t

v2,t

...

vk,t


(25)

where |αi| < 1 for i = 1, . . . , k, v = (v1, v2, . . . , vk)
′ is the vector of mean-zero iid sunspot shocks,

and x = (x1, x2, . . . , xk)
′ ⊂ y is the vector of forward looking variables that we choose to follow

sunspot processes. The auxiliary equations do not add economic structure to the model. They

are simply a device that allows MSV and sunspot solutions to have the same reduced form.

By choosing different values for the αi’s either inside or outside of the unit circle, standard RE

solution techniques when applied will select either a sunspot or MSV solution, respectively.

Equation (25) is added to equations (2) and (3) to form

Ã0(θ)zt = Γ̃0(θ) + Ã1(θ)zt−1 + B̃0(θ)IEtzt+1 + D̃0(θ)ut (26)

ut = ρ̃(θ)ut−1 + ϕt (27)

where zt = (y′6x,t x
′
t s
′
t IEtx

′
t+1)′, ϕt = (ε′t v

′
t)
′ and

Ã0(θ) =



In−k 0n−k×k 0n−k×k 0n−k×k

0k×n−k Ik 0k×k 0k×k

0k×n−k −Ik Ik 0k×k

0k×n−k 0k×k 0k×k Ik


, Γ̃0(θ) =



Γy(θ)

Γx(θ)

0k×1

0k×1



Ã1(θ) =



Ay(θ) Ayx(θ) 0n−k×k 0n−k×k

Axy(θ) Ax(θ) 0k×k 0k×k

0k×n−k 0k×k α−1 −Ik

0k×n−k 0k×k 0k×k 0k×k


, B̃0(θ) =



By(θ) Byx(θ) 0n−k×k 0n−k×k

Bxy(θ) Bx(θ) 0k×k 0k×k

0k×n−k 0k×k 0k×k 0k×k

0k×n−k Ik 0k×k 0k×k



25



Forward Guidance Puzzle

D̃0(θ) =



Dy 0k×k

Dx 0k×k

0k×l −Ik

0k×l 0k×k


, ρ̃(θ) =

 ρ 0l×k

0k×l 0k×k

 ,

where α−1 = diag(1/α1, . . . , 1/αk), Ay(θ) is the n− k × n− k submatrix of A associated with

y 6x ⊂ y, Ayx(θ) is the n− k × k submatrix of A associated with x ⊂ y, and so on and so forth.

Multiplying both sides by Ã0(θ)−1 yields the usual reduced form

zt = Γ̃(θ) + Ã(θ)zt−1 + B̃(θ)IEtzt+1 + D̃(θ)ut (28)

Note that (28) collapses to (2) when k = 0. When k > 0, solutions of these equations take on

the usual MSV VAR(1) form in zt, however, xt and yt may now follow high order processes.

To solve for the rational solution of a FGA, {θTa , θT ∗}, where θT ∗ is indeterminate with k

degrees of indeterminacy, we can proceed as follows.

1. Choose k forward looking variables x ⊂ y to follow sunspots.

2. Append k auxiliary equations (25) to the reduced form.

3. Rearrange the reduced form to arrive at (28).

4. Solve for the sunspot solution implied by θT ∗ and your sunspot choices x and v

zt = ã(θT ∗) + b̃(θT ∗)zt−1 + c̃(θT ∗)ut. (29)

5. Construct the usual recursion (15) - (17) with the augmented model’s reduced form.

6. Iterate to find the solution to zt.

Explicit in this process is that the FGA solution assumes coordination on a sunspot in the

terminal regime, θT ∗ . Conditioning on a specific sunspot allows us to recover an FGA solution

in the exact same way we proceeded in the determinate case. In economic terms, this is akin to

the policy announcement coordinating agents’ expectations on the sunspot. Once expectations
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are coordinated on the sunspot, they are no longer forward looking when considering the impact

of the FGA.10

5.2 Sunspot Solutions of NK Models

To apply the sunspot method to the standard New Keynesian model, consider equations (18)

and (19) with M = M f = χ = 1 and the following policy rule

it = φππt + φxxt. (30)

We consider the possibility of a sunspot in either inflation or output expectations and append

the following equation to the model (18), (19), and (30) to create the augmented system

st =
1

α
st−1 − νt + qt − IEt−1qt, (31)

where νt is the sunspot and q ∈ {x, π}. When 0 < α < 1, standard RE solution techniques

select the sunspot equilibrium. When α > 1, the MSV RE solution is selected and the auxiliary

process has no impact.

The addition of the auxiliary equation creates an augmented system of the form Ã0zt =

Ã1zt−1 + B̃0IEtzt+1 + D̃0εt where zt = (xt, πt, st, IEtπt+1)′ if q = π, or zt = (xt, πt, st, IEtxt+1)′

when q = x.11 The augmented model again has two types of solutions: the MSV solution

(zt = b̄1zt−1 + c̄1εt) and a continuum of sunspot solutions of the form: zt = b̄2zt−1 + c̄2εt. The

solutions have a closed form. In the case of q = π, the sunspot solution (zt = b̄2zt−1 + c̄2εt) is

b̄2 =



0 0
Ω−
√

(Ω−1)2−4κσ(βφπ−1)−1

2ακ
−Ω−
√

(Ω−1)2−4κσ(βφπ−1)−1

2κ

0 0 − 1
α

1

0 0 0 0

0 0 −Ω−
√

(Ω−1)2−4κσ(βφπ−1)+1

2αβ

Ω−
√

(Ω−1)2−4κσ(βφπ−1)+1

2β


,

10 In the Appendix 2, we demonstrate the method using the same model studied by Lubik and Schorfheide
(2003) and BN in their explorations of sunspot solutions to illustrate that indeed this method recovers the same
sunspot solutions.

11Note that we substituted (30) into (18)-(19) to form the augmented system in this section.
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where Ω = σβφx + κσ + β.12 The relevant IE-stability condition in this case is

2β√
(κσ + 1)2 − 4βκσφπ + 2β(κσ − 1) (σφx + 1) + (β(1 + σφx)) 2 + β + κσ + βσφx + 1

< 1,

which is always between zero and one for standard parameter values of κ, σ, and β if φπ <

κ+(β−1)φx
κ

. The sunspot solution, therefore, satisfies IE-stability for parameter values that are

usually predictive of the forward guidance puzzle.

Now consider the following FGA:

it =


φaππt + φaxxt if T a ≤ t < T ∗

φaππt + φaxxt + ī if t = T ∗

φ∗ππt + φ∗xxt if t > T ∗

, (32)

which nests the standard ZLB forward guidance thought experiment (20) as a special case.

Proposition 3: Consider the New Keynesian model and FGA given by (18), (19), (32) with

M = M f = χ = 1 and ī 6= 0:

1. The MSV FGA solution (α > 1) does not exhibit the forward guidance puzzle if and only

if Φ̄(θTa) is IE-stable.

2. When φaπ <
κ+(β−1)φax

κ
, sunspot FGA solutions (0 < α < 1) exist that do not exhibit the

forward guidance puzzle if and only if

φ∗π <
κ+ (β − 1)φ∗x

κ

The proof is in the appendix. The proposition states that IE-stability is a necessary and

sufficient condition to rule out the puzzle in the MSV case, but that the sunspot solutions

under consideration are not prone to the puzzle. The intuition for why the sunspot studied here

resolves the forward guidance puzzle is that coordination on the sunspot pins down inflation

or output expectations in the FGA equilibrium and removes the explosive dynamics. For

12By rearranging terms in b̄2, we can show that st = 0 in the sunspot equilibrium. In other words, the
appended process is only a tool that selects a sunspot solution of (18), (19), and (30) and st never directly
impacts equilibrium dynamics of π, x, or i. Also note that the MSV solution for π, i and x is unique, but there
are infinitely many sunspot solutions of the form considered in this section (each sunspot solution is indexed by
an arbitrary sequence of sunspot shocks, {νt}).
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example, if we choose inflation to follow a sunspot, then the inflation forecast error at the

time of announcement is entirely determined by the non-fundamental sunspot variable: πTa −

IETa−1πTa = vt in equilibrium, where sTa−1 = 0 by construction. Therefore, πTa is unaffected

by the announcement. These puzzle-free equilibria exist so long as the terminal regime of the

model is indeterminate. If the terminal regime is determinate, however, then Φ0(θT ∗) is the

MSV solution, which is not in the appropriate neighborhood of the IE-stable sunspot solutions

(condition (3) of Proposition 2 is violated) and the puzzle returns.

5.3 Sunspots in a medium-scale model

The sunspot resolution of the puzzle is not just a feature of the simple model. It scales. To

illustrate, we append equation (31) onto the model of Smets and Wouters (2007) and assume

q = π. We then consider the standard forward guidance thought experiment given by (20).

Figure 2 shows the dynamic response of output, inflation, and the interest rate to forward

guidance announcements with two different terminal regimes. In the first FGA, we set φ∗π = 1.01

such that the terminal regime is determinate. In the second FGA, φ∗π = 0.99 such that the

terminal regime is indeterminate.13 The θTa regime in both cases is the same and features

a complete suspension of the monetary policy rule as in (20). The remaining parameters of

the model are set to the mean posterior values reported in Smets and Wouters (2007). In the

former case, the impact of the policy is increasing in ∆p. However, when φ∗π < 1 and there is a

sunspot solution, there is a well-behaved bounded response.

IE-stability reveals that one explanation for why monetary policy forward guidance may

not be arbitrarily powerful is that agents believe that policy will remain passive after liftoff and

there is coordination on a sunspot. The notion that forward guidance also conveys a preference

for passive policy after liftoff seems plausible. Moreover, it is possible to empirically test this

hypothesis using methods similar to those considered in Lubik and Schorfheide (2004) and BN

in conjunction with the methods of Kulish and Pagan (2017) and Kulish, Morley and Robinson

(2017). This is a compelling case for future research.

IE-stability analysis is also easy to conduct in models of this size. It requires only a few lines

13The sunspot shock is parameterized as st = 1
φπ
st−1 − νt + πt − IEt−1πt in the simulations, where φπ is

the response to inflation in the policy rule. For the exercise we chose two calibrations that are on either side
of the boundary of indeterminacy (φπ = 1) to show that Proposition 3 generalizes to a medium-scale model.
Qualitatively similar results obtain, e.g., under the assumption that the central bank pegs the the interest rate
at a steady state value after liftoff (φπ = 0). We shows these results in Appendix 4.
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Figure 2: Forward Guidance Announcements in the Smets and Wouter’s model
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Notes: The top figures shows the paths of output, inflation, and interest rates for anticipated 100-basis point
monetary policy shocks with ∆p = 10, 20, ... , 70. The bottom figures show the impact using the L∞ norm for
∆p = 1, ..., 300.

of code to check the relevant eigenvalues from matrices that are typically already constructed

for any numerical study of these models. We relied here on code provided by Jones (2017) that

works with Dynare for modeling the zero lower bound, which extracts the relevant matrices

needed for this type of analysis.

6 Extension II: Markov switching FGA Solutions

We now extend our methods to models with Markov-switching policy regimes. Markov-switching

models are sometimes used in the empirical literature to study the economy at the ZLB, and

in these modeling frameworks the conditions for determinacy and IE-stability of a rational

expectations equilibrium may differ substantially.

We provide two examples in this section that showcase the power of IE-stability analysis

to determine whether the forward guidance puzzle is present when history dependent policy

is introduced. Specifically, we first study Markov-switching between active and passive fiscal
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policy and active and passive inflation targeting. We then study price level targeting with

varying levels of central bank credibility. For the active fiscal policy case, we assume agents

contemplate the possibility of either active fiscal policy/passive monetary policy in the terminal

regime or vice versa. In this environment, if there is a sufficiently high probability that the

economy enters a passive fiscal policy regime, and a correspondingly low probability of an active

fiscal policy, then there is indeterminacy when analyzing the ZLB regime in isolation as in the

standard model. However, the MSV FGA solution in many cases remains IE-stable. Like in our

sunspot example, indeterminacy at the ZLB is not predictive for whether the forward guidance

puzzle is present.

In a New Keynesian model of forward guidance with price level targeting after liftoff, we find

that the relevant IE-stability eigenvalue is always one. The unit eigenvalue precludes arbitrarily

powerful effects of forward guidance as ∆p is varied, but it also points to the puzzling prediction

that a promise made arbitrarily far in the future can have a significant effect on the economy

at the time of announcement. We use Markov-switching in this environment to add exogenous

credibility considerations to the FGA to see how this affects the prediction. We assume that

agents place some probability that the central bank will renege on announced forward guidance

policy. We show numerically that if agents attach an arbitrarily small positive probability to the

prospect that the central bank reneges on its commitment in the next period, then the relevant

IE-stability eigenvalue falls below one and the forward guidance puzzle is totally resolved under

price level targeting.

6.1 IE-stability in Markov-switching models

We follow McClung (2021) and consider FGAs in a class of Markov-switching structural models

of n equations of the form

yt = Γ(θ, ξt) + A(θ, ξt)yt−1 +B(θ, ξt)IEtyt+1 +D(θ, ξt)ωt (33)

ωt = ρ(θ, ξt)ωt−1 + εt (34)

where ξt is an S-state exogenous Markov process, and all variables are defined analogous to

those in Section 3. Let P denote the transition probability matrix governing the evolution of ξt

and define pij = Pr(ξt = j|ξt−1 = i) where pij is the (i, j)-element of P . We assume the model
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steady state is independent of ξt (e.g. the steady state for t < T a, yss, does not depend on

ξt). This is a common assumption in the literature, particularly in analyses of regime-switching

models of monetary-fiscal policy interactions where recurring changes in the monetary and fiscal

policy stance do not impact the steady state.14

The only thing that distinguishes (33) from (2) is the regime-switching variable, ξt. In this

class of models, agents do not know the future path of ξt, and therefore ξt allows us to model

any uncertainty about the economy’s future structure that remains after a FGA.15 As in Section

3, McClung (2021) obtains the RE solution to a FGA by using the method of undetermined

coefficients and backward induction (i.e. the approach is a backward application of techniques

developed in Cho, 2016). A (MSV) RE solution for t = T ∗ takes the form of

yt = a(ξt) + b(ξt)yt−1 + c(ξt)ωt (35)

This implies that the expectation of yt+1 in time T ∗ is given by

IEtyt+1 = IEta(ξt+1) + IEtb(ξt+1)yt + IEtc(ξt+1)ρ(θT ∗ , ξt+1)ωt (36)

=
S∑
j=1

pξtj (a(j) + b(j)yt + c(j)ρ(θT ∗ , j)ωt) (37)

Define b = (b(1), . . . , b(S)), Ξ∗(ξt, b) = (I −B∗(ξt)IEtb(ξt+1)), and B∗(ξt) = B(θT ∗ , ξt), Ba(ξt) =

B(θTa , ξt), etc. Substituting equation (36) into equation (33) and rearranging yields the follow-

ing equivalences

a(ξt) = Ξ∗(ξt, b)
−1 (Γ∗(ξt) +B∗(ξt)IEta(ξt+1)) (38)

b(ξt) = Ξ∗(ξt, b)
−1A∗(ξt) (39)

c(ξt) = Ξ∗(ξt, b)
−1 (B∗(ξt)IEtc(ξt+1)ρ∗(ξt+1) +D∗(ξt)) (40)

where the MSV RE solution is given by ā(θT ∗ , ξt), b̄(θT ∗ , ξt), and c̄(θT ∗ , ξt) satisfying equations

(38), (39), and (40) for ξt = 1, . . . , S.

14A growing literature examines models of this form. We will not review the Markov-switching DSGE liter-
ature here, but emphasize that Cho (2016, 2021), Maih (2015), Foerster, Rubio-Ramı́rez, Waggoner and Zha
(2016), Farmer, Waggoner and Zha (2009, 2011) and Barthélemy and Marx (2019), among others, develop
analytical tools and solution techniques for models of this form. Our approach most closely resembles Cho
(2016).

15To be precise, agents know the current realization of ξt and P .
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In period t = T ∗ − 1, the MSV solution again takes the same form as equation (35).

Expectations of yt+1 at time t = T ∗ − 1, however, are no longer unknown. They are given by

IEtyt+1 = IEtā(θT ∗ , ξt+1) + IEtb̄(θT ∗ , ξt+1)yt + IEtc̄(θT ∗ , ξt+1)ρ∗(ξt+1)ωt

Continuing to work backwards in time, the RE Markov-switching solution for the FGA can be

written recursively as

āj(ξt) = Ξa(ξt, b̄j−1)−1 (Γa(ξt) +Ba(ξt)IEtāj−1(ξt+1)) (41)

b̄j(ξt) = Ξa(ξt, b̄j−1)−1Aa(ξt) (42)

c̄j(ξt) = Ξa(ξt, b̄j−1)−1 (Ba(ξt)IEtc̄j−1(ξt+1)ρj−1(ξt+1) +Da(ξt)) (43)

where j is defined as before, ρj = ρa if j > 0 and ρj = ρ∗ if j = 0, and ā0 = (ā(θT ∗ , 1), . . . , ā(θT ∗ , S)),

b̄0 = (b̄(θT ∗ , 1), . . . , b̄(θT ∗ , S)), and c̄0 = (c̄(θT ∗ , 1), . . . , c̄(θT ∗ , S)).

The T-map difference equations are now (41), (42), and (43). Define Φ = (ā, b̄, c̄) where

ā = (ā(1), . . . , ā(S)), b̄ = (b̄(1), . . . , b̄(S)), and c̄ = (c̄(1), . . . , c̄(S)). As in Section 3, a fixed

point of this map, Φ̄, is said to be IE-stable if for all Φ0 in an appropriate neighborhood of Φ̄,

ΦN → Φ̄ as N →∞. McClung (2020) provides E-stability conditions, which can be generalized

to IE-stability.

Theorem 2 An MSV solution

ā = (ā(1), . . . , ā(S)), b̄ = (b̄(1), . . . , b̄(S)), and c̄ = (c̄(1), . . . , c̄(S)) is IE-stable if all eigenvalues

of

DTa(ā, b̄) =

⊕Sk=1

(
I −B(k)

S∑
h=1

pkhb̄(h)

)−1

B(k)

 (P ⊗ In)

DTb(b̄) =

⊕Sk=1b̄(k)′ ⊗

(
I −B(k)

S∑
h=1

pkhb̄(h)

)−1

B(k)

 (P ⊗ In2)

DTc(b̄, c̄) =
S∑
k=1

ek ⊗ (pk1ρ(1)′ . . . pkSρ(S)′
)
⊗

(I −B(k)
S∑
h=1

pkhb̄(h)

)−1

B(k)


have modulus less than 1. The solution is not IE-stable if any of the eigenvalues have modulus
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larger than 1.16

The IE-stability condition in Theorem 2 is the local stability condition for a given fixed point

solution to (41), (42), and (43), as shown in the appendix. If we set S = 1, the model (33)

becomes (2) and the IE-stability conditions in Theorem 2 become the IE-stability conditions

in Theorem 1. Because the definitions in Section 3 extend to (33), and because yss does not

depend on ξt, we can extend Proposition 2 to determine when a model of the form (33) predicts

a forward guidance puzzle.

Proposition 4 Consider (33)-(34). A FGA {θTa , θT ∗} does not exhibit the forward guidance

puzzle if

1. Φ̄(θTa) exists

2. Φ̄(θTa) is IE-stable

3. Φ0(θT ∗) exists and is in the appropriate neighborhood of Φ̄(θTa)

The proof of Proposition 4 is in the Appendix.

6.2 Active Fiscal Policy

To show how fiscal policy considerations can solve the puzzle when interest rates are pegged at

the ZLB, we expand on the simple example presented in section 3 and consider a fully-fledged

New Keynesian model of monetary-fiscal interactions. Assume that a fiscal authority raises

taxes or surpluses, T , and issues nominal debt, B, to finance fiscal deficits (when T < 0). Let

bt and τt denote the log deviation of the real debt and surpluses. Fiscal policy is then described

by

bt = β−1 (bt−1 − πt) + it − τt (44)

τt = γ(ξt)bt−1. (45)

The value of γ in (45) is referred to as the fiscal stance on debt. The influence of γ on debt

dynamics is seen by substituting (45) into (44), which yields an autoregressive process for bt

16The sum operator, ⊕, is defined such that ⊕Sk=1A(k) = diag(A(1), . . . , A(S)) for generic n × n matrices
(A(1), . . . , A(S)), and ek is a S × 1 vector with 1 in its k-th entry and zeros elsewhere.
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with AR(1) parameter equal to β−1−γ, which is equal to δ from the Fisher model of section 3.

When γ is high (i.e. values of γ consistent with |β−1−γ| < 1), increases in government debt, b,

are fully amortized by increases in current and future fiscal surpluses, and bt evolves according

to a stable autoregressive process. On the other hand, low values of γ (i.e. |β−1 − γ| > 1) lead

to unstable debt-dynamics, and changes in inflation combined with passive monetary policy

are required to stabilize debt in equilibrium. It is this adjustment of inflation to stabilize debt

that introduces history dependence to policy, as we emphasized in earlier sections.

When the economy is at the ZLB, it is natural to assume that fiscal policy is active and

monetary policy is passive. However, once policy is unconstrained, it is reasonable to expect

that monetary policy will be active and fiscal policy will return to a passive stance. Moreover,

fiscal policy regimes can evolve over time in democratic countries (e.g., as new Congresses

pursue different fiscal policies). To capture how such beliefs in the terminal regime affect the

power of forward guidance, we let γ follow an exogenous 2-state Markov process, ξt ∈ {M,F},

such that |β−1 − γ(M)| < 1 < |β−1 − γ(F )|.17 We also assume that the monetary regime is

characterized by a time-varying Taylor rule of the form:

it = φπ(ξt)πt (46)

where the restriction φπ(F ) < 1 < φπ(M) is imposed in θT ∗ . We impose this last parameter

restriction because passive monetary policy (i.e. φπ(F ) < 1) allows for debt-stabilizing inflation

to occur when 1 < |β−1 − γ(F )|, whereas active monetary policy (i.e. 1 < φπ(M)) helps to

prevent coordination on sunspots during periods where debt is being stabilized by fiscal policy

(i.e. |β−1 − γ(M)| < 1). The full model is given by (18)-(19) and (44)-(46).18

To assess the IE-stability properties, we use numerical techniques and the conditions pre-

sented by Theorem 2. Figure 3 shows determinacy and IE-stability regions in the fiscal policy

parameter space under an interest rate peg, and it can be seen that IE-stability is satisfied pro-

vided that the overall fiscal stance is sufficiently active (i.e. γ is on average relatively small).19

17Related models are studied by Davig and Leeper (2011), Bianchi and Ilut (2017), Bianchi and Melosi (2017),
and Ascari, Florio and Gobbi (2020), among others.

18 McClung (2021) uses a similar model to show when the forward guidance puzzle is ameliorated by fiscal
policy considerations. We refer interested readers to McClung (2021) for more information on the effects of
forward guidance under active or non-Ricardian fiscal regimes. We set χ = M = Mf = 1 for this exercise so
the model is equivalent to the standard New Keynesian representative agent benchmark.

19Note that the left panel of Figure 3 considers a region of the parameter space that allows for γ(F ) < 0.
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Figure 3: IE-stability and Determinacy Regions
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Notes: The white region is the indeterminate and IE-unstable parameter region. The right figure shows the
initial responses of annual inflation (i.e. “1” is 1% annual inflation) in the Markov-switching New Keynesian
model for anticipated changes in the interest rate that occur ∆p periods in the future.

Notice that the indeterminacy and IE-stability conditions are distinct. To show also that the

forward guidance puzzle is independent of indeterminacy, we examine three parameterizations

from Figure 3. Parameterization A delivers indeterminacy under an interest rate peg, but the

corresponding MSV solution is IE-stable. Parameterization B constitutes a small deviation

from Parameterization A, and it is IE-unstable under the peg. Parameterization C is still

further in the indeterminacy/IE-unstable region of the policy parameter space.20

According to our IE-stability criterion, parameterization A should correspond to a puzzle-

proof case, whereas parameterizations B and C should not. The initial responses of inflation

to anticipated policy shocks for increasing ∆p’s for the three parameterizations confirms the

prediction.21

Though Davig and Leeper (2011) estimated γ(F ) < 0, many papers in the literature impose the restriction:
γ(F ) ≥ 0. From Figure 3, it is evident that our main result holds for γ(F ) ≥ 0 as there is a region of the
parameter space for which γ(F ) ≥ 0, the model is indeterminate and an IE-stable solution exists.

20We can construct stable common-factor sunspot solutions for each of three parameterizations considered in
this section. Hence, multiple equilibria exist under Parameterizations A, B, C. See Cho (2016, 2021) for more
information.

21In these plots we assume that the economy is in Regime M at the time of the forward guidance announcement,
though, qualitatively similar impulse responses can be obtained under the alternative assumption that the
economy is in Regime F.
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6.3 Price level targeting

Returning again to the standard New Keynesian model given by (18) and (19) with M = M f =

χ = 1, we consider the following forward guidance policy:

it =


0 if T a ≤ t < T ∗

ī if t = T ∗

φp(pt − p̄) if t > T ∗

,

where φp > 0, pt is the (log) of the price level, and p̄ is the price level target. Further, consider

that the policy announcement might not be viewed as credible. Specifically, assume that agents

attach a constant probability, 1 − η, in each period T a ≤ t ≤ T ∗ that the central bank will

renege on the promised pegged interest rate of it = 0 and adjust rates in accordance with the

price level targeting rule that governs policy with certainty from period t > T ∗. When η = 1,

the policy is perfectly credible.

The first panel of Figure 4 traces out the largest eigenvalue identified by IE-stability as a

function of η. A fully credible FGA combined with expectations of price level targeting after

liftoff generates a unit eigenvalue. This implies that expectations of price level targeting will

bound the effects of fully credible forward guidance announcements, but that an anticipated

rate cut expected to occur in the infinite horizon has non-zero effects on inflation and output.

On the other hand, imperfect credibility (i.e. any η < 1), brings the relevant eigenvalue inside

the unit circle. Hence, expectations of price level targeting ensure that (nearly) fully credible

forward guidance announcements have bounded effects on inflation and output which go to zero

as the anticipated rate change is pushed into the infinite horizon. For comparison, the relevant

eigenvalues are plotted from a model of forward guidance which assumes that the central bank

reverts to an inflation targeting Taylor rule after liftoff (i.e. the interest rate rule after liftoff is

given by (30), as opposed to the price level targeting rule, but all other details of the exercise

are the same). For high degrees of credibility, the IE-stability eigenvalue is strictly outside

the unit circle and therefore the model is susceptible to the forward guidance puzzle, as we

have shown in earlier sections. Only when central bank credibility is low will forward guidance

announcements have bounded effects in the model with an inflation targeting central bank.

The second panel shows the relationship of this result with κ, the slope of the Phillips curve.
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Figure 4: IE-stability, Price Level Targeting, and Reneging

Notes: In the bottom panels, the white region is the IE-unstable parameter
region. The red region depicts calibrations that give a unit IE-stability eigen-
value. See section 4 for calibration details (additionally, φπ = φp = 1.5 and
φy = 0).

Recall that previously, κ was shown to be a key determinate of the puzzle’s resolution when

relying on dampening the general equilibrium effects of an FGA. There is no such relationship

when assuming price level targeting as the terminal regime. In this sense a history dependent

price level targeting policy provides a more robust solution of the puzzle. The final panel

illustrates the point by showing the same IE-stability graph assuming inflation targeting. Here

there is clear relationship with κ, where progressively less credibility is required as κ increases

in order to resolve the forward guidance puzzle under an inflation targeting regime.

Figure 5 compares the impact effect under the two policies for different parameterizations of

credibility. Perfect credibility under price level targeting bounds the effect but does not reduce

the impact of promises made arbitrarily far in the future. Moving away from perfect credibility,

however, overturns this prediction.
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Figure 5: Reneging and the Forward Guidance Puzzle

Notes: The initial responses of annual inflation (i.e. “1” is 1% annual inflation) for anticipated
changes in the interest rate that occur ∆p periods in the future. See section 4 for calibration details
(additionally, φπ = φp = 1.5 and φy = 0).

7 Conclusion

We show that IE-stability is a sufficient condition for ruling out the forward guidance puzzle,

which we defined in a general way for a wide class of anticipated policy actions in a broad class of

models. We furthermore establish that IE-stability is necessary and sufficient for resolving the

classic New Keynesian forward guidance puzzle, which is present if announcements about future

interest rate changes have unbounded effects on the economy as the timing of the anticipated

rate change is pushed into the infinite future.

By establishing the link between IE-stability and the forward guidance puzzle, we put

forward three (not mutually exclusive) categories of forward guidance resolutions. The forward

guidance puzzle may be eliminated by introducing over-discounting of expectations relative to

the baseline model; new assumptions may be added that link expectations to additional state

variables in equilibrium, which we call predetermining expectations; or policy may be pursued

that implies history dependence. The latter resolution also introduces new state variables which

expectations depend on in equilibrium. We distinguish it from predetermining expectations

because it is explicitly a policy choice and not an emergent feature of some other aspect of the

economy. We believe these categories may help economists anticipate why the puzzle may arise

in their model and how it can be mitigated.

There are many extensions beyond the scope of this paper. For example, we show how

a single quantitative model can nest puzzling and non-puzzling behavior, which opens the
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possibility for empirical tests of the power of forward guidance. We also limit our study to

linear frameworks, even though many policy relevant studies work with nonlinear models. Many

studies of E-stability in these environments are well-established in the literature. Extending

our framework to these cases is an interesting avenue for future research.
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Appendix

A1 Proofs of propositions

Theorems 1 and 2 in the paper are known results in the literature that we use to prove the key

propositions. The relevant citations for where the proofs are found are provided in the main

text.

Proof of Proposition 1 Following Cagliarini and Kulish (2013) a straightforward way to

proceed is to note that the system of equations given by (7) can be written as



In −B(θTa) ... ... 0n

−A(θTa) In −B(θTa)
. . .

...

0n −A(θTa) In −B(θTa)
...

...
. . . . . . . . . 0n

0n ... −A(θTa) In −B(θTa)

0n ... ... −b̄(θT ∗) In





yTa

IEtyTa+1

...

IEtyT ∗


=



Γ(θTa) + A(θTa)yTa−1 +D(θTa)ωTa

IEt (Γ(θTa) +D(θTa)ωTa+1)

...

IEt (ā(θT ∗) + c̄(θT ∗)ωT ∗)


The system has (∆p+1)×n equations and (∆p+1)×n unknowns given by the vector representing

the path of y, Gy = R.

Case 1: Suppose that y is unique but θT ∗ implies an indeterminate solution. Then IEtyT ∗ is

not unique. Therefore, y is not unique.

Case 2: Suppose that θT ∗ implies a determined solution for yT ∗ . Then, we can solve this

system by Block Trangularization. We assume that (I − A(θTa)B(θTa))
−1 exists throughout

our derivations. This is stated in footnote 6 of the main text.

Transform Gy = R to Gy = P
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In G(1) ... ... 0n

0n In G(2) . . .
...

0n 0n In G(3) ...

...
. . . . . . . . . 0n

0n ... 0n In G(∆p)

0n ... ... 0n In





yTa

IEtyTa+1

...

IEtyT ∗


=



P (1)

P (2)

...

P (∆p+1)



G1 = −B(θTa)

G(k) = −
(
I + A(θTa)G

(k−1)
)−1

B(θTa) for k = 2, ..., (∆p)

P 1 = Γ(θTa) + A(θTa)yTa−1 +D(θTa)ωTa

P (k) =
(
I + A(θTa)G

(k−1))
)−1

(R(k) + A(θTa)P
(k−1)) for k = 2, ..., (∆p)

P (∆p+1) = (I + b̄(θT ∗)G(∆p))−1(R(∆p) + b̄(θT ∗)P (∆p))

G is upper triangular with ones along the entire diagonal, therefore, it is invertible. The

unique path of y is y = G−1P. �

Proof of Proposition 2 We can write the impact of an FGA {θi}i=Ta,T ∗ using equations

(15), (16), and (17) as

|yss − IE [yTa ] | = |yss − IE
[
āj + c̄jωTa + b̄jyTa−1

]
|

= |yss − āj − b̄jyss|

=
∣∣(I − b̄j)yss − āj∣∣ ,

where | · | is any p-norm. By the triangle inequality, it follows that

|(I − b̄j)yss| + |āj| ≥
∣∣(I − b̄j)yss − āj∣∣ .
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If all three conditions are satisfied, then the recursion given by equations (15) - (17) are well

defined with initial conditions ā0(θT ∗) and b̄0(θT ∗), and āj → ā(θTa) and b̄j → b̄(θTa) as j =

∆p → ∞ by Theorem 1. Therefore, in the limit as ∆p goes to infinity the impact of the FGA

can be no larger in magnitude than |(I − b̄(θTa))yss|+ |ā(θTa)|. �

Proof of Proposition 3

Part 1: For ease of notation, let φaπ = φπ and φax = φx. The MSV solution for t > T ∗ can be

expressed as yt = (xt, πt)
′ = 02×1. Therefore, the t = T a solution is given by:

yTa = G∆p
a Γ

= Q−1

 λ1 0

0 λ2


∆p

QΓ

where

Ga =

 1
κσφπ+σφx+1

σ−βσφπ
κσφπ+σφx+1

κ
κσφπ+σφx+1

βσφx+β+κσ
κσφπ+σφx+1

 Γ =

 − īσ
κσφπ+σφx+1

− īκσ
κσφπ+σφx+1



Q =

 1
−
√
β2σ2φ2

x+2β2σφx+β2+2βκσ2φx−4βκσφπ+2βκσ−2βσφx−2β+κ2σ2+2κσ+1+βσφx+β+κσ−1

2κ

1

√
β2σ2φ2

x+2β2σφx+β2+2βκσ2φx−4βκσφπ+2βκσ−2βσφx−2β+κ2σ2+2κσ+1+βσφx+β+κσ−1

2κ



and ∆p = T ∗ − T a, λ1 =
βσφx+β+κσ+1−

√
(−βσφx−β−κσ−1)2−4(βκσφπ+βσφx+β)

2(κσφπ+σφx+1)
, and

λ2 =
βσφx+β+κσ+1+

√
(−βσφx−β−κσ−1)2−4(βκσφπ+βσφx+β)

2(κσφπ+σφx+1)
. This yields the following solution for in-

flation at the time of announcement:

πTa = ī
(
µ1λ

∆p

1 − µ2λ
∆p

2

)

where µ1 =
κσ

(
−
√

2β(κσ(σφx−2φπ+1)−σφx−1)+(βσφx+β)2+(κσ+1)2+βσφx+β+κσ+1
)

2(κσφπ+σφx+1)
√

2β(κσ(σφx−2φπ+1)−σφx−1)+(βσφx+β)2+(κσ+1)2
and

µ2 =
κσ

(√
2β(κσ(σφx−2φπ+1)−σφx−1)+(βσφx+β)2+(κσ+1)2+βσφx+β+κσ+1

)
2(κσφπ+σφx+1)

√
2β(κσ(σφx−2φπ+1)−σφx−1)+(βσφx+β)2+(κσ+1)2

> 0. If the MSV Φ̄(θTa) is

IE-unstable (φπ < κ+(β−1)φx
κ

) then |λ1| < 1 < λ2 and therefore λ
∆p

1 → 0, λ
∆p

2 → +∞ and

πTa → −∞ as ∆p →∞ if ī > 0 and πTa →∞ as ∆p →∞ if ī < 0.

If, however, we have IE-stability (φπ >
κ+(β−1)φx

κ
), then by Proposition 2 and its Corollary
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there is no forward guidance puzzle in the MSV case.

IE-stability is necessary and sufficient for the puzzle to be absent in the MSV FGA solution

for the FGA (32).

Part 2: For the model under consideration, the recursion (15) - (17) augmented with equation

(29) reduces to a one-dimensional difference equation. The difference equation has a stable

equilibrium point for which all sunspot solutions that satisfy φ∗π <
κ+(β−1)φ∗x

κ
are in the stable

set of a unique Φ̄(θTa), which is IE-stable.

If φ∗π <
κ+(β−1)φ∗x

κ
is not satisfied, then part (3) of Proposition 2 fails because the termi-

nal regime is the MSV solution and that solution is unique as shown in Proposition 1. The

conclusions of part 1 then follow.

If φ∗π <
κ+(β−1)φ∗x

κ
is satisfied, then there are two cases to consider. First, consider the case

that the sunspot is in the output gap expectations such that q = x. The terminal sunspot

solution for t > T ∗ is given by

b̄T ∗ =



0 0 − 1
α

1

0 0 −ψT∗
α

ψT ∗

0 0 0 0

0 0 −G(ψT∗ )
α

G(ψT ∗)


where ψT ∗ = −

√
(βσφ∗x+β+κσ−1)2−4κσ(βφ∗π−1)+βσφ∗x+β+κσ−1

2σ(βφ∗π−1)
and G(ψT ∗) = 1+σφ∗x+σφ∗πψT∗

1+σψT∗
. Note that

ψT ∗ > 0 if φ∗π <
κ+(β−1)φ∗x

κ
and κ > 0, φ∗x ≥ 0, and 0 < β < 1. Through direct computation, one

can verify that

b̃j =



0 0 − 1
α

1

0 0 −ψj
α

ψj

0 0 0 0

0 0 −Ga(ψj−1)

α
Ga(ψj−1)


=



0 0 − 1
α

1

0 0 −f(ψj−1)

α
f(ψj−1)

0 0 0 0

0 0 −Ga(ψj−1)

α
Ga(ψj−1)


given b̃0 = b̄T ∗ where Ga(ψj−1) = 1+κσφaπ+σφax

1+ψj−1σ(1−βφaπ)
and ψj = f(ψj−1) =

κ+ψj−1(βσφax+β+κσ)

ψj−1(σ−βσφaπ)+1
. There-

fore, if for all ψT ∗ > 0 the limj→∞ ψj = f(ψj−1) = ψA, then we have a unique φ̄(θTa) solution

for which we can assess IE-stability.
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To show ψA is the unique rest point for any initial ψT ∗ , we note that f(ψ) − ψ = 0 is

quadratic with two roots ψL < 0 < ψA. Define ψB = −1/(σ − βσφaπ) < ψL < 0. One

can show that for all ψ > ψB it follows that f(ψ) < ψ as ψ → ψ+
B , f(0) = κ > 0, and

limψ→∞f(ψ) = f̄ is finite so that 0 < f ′(ψA) < 1 < f ′(ψL). Therefore, ψj → ψA =

−
√

(βσφax+β+κσ−1)2−4κσ(βφaπ−1)+βσφax+β+κσ−1

2σ(βφaπ−1)
given ψ0 = ψT ∗ > 0.

We now assess IE-stability, which obtains eigenvalues of FA = (I − B̃ab̃A)−1B̃a and the

eigenvalues of (b̃A)′ ⊗ FA are inside the unit circle. The relevant eigenvalues are α and

2β√
4κσ(1−βφaπ)+(βσφax+β+κσ−1)2+βσφax+β+κσ+1

, which are inside the unit circle given φaπ <
κ+(β−1)φax

κ

and because |α| < 1 by construction. Thus, by Proposition 2 there is no Forward Guidance

Puzzle.

The second case is when q = π. Here b̄T ∗ is given by

b̄T ∗ =



0 0 βψT∗−1
ακ

1−βψT∗
κ

0 0 − 1
α

1

0 0 0 0

0 0 −ψT∗
α

ψT ∗


where ψT ∗ =

−
√

(βσφ∗x+β+κσ−1)2−4κσ(βφ∗π−1)+βσφ∗x+β+κσ+1

2β
. As before, one can verify through direct

computation that the recursion is

b̃j =



0 0
βψj−1

ακ

1−βψj
κ

0 0 − 1
α

1

0 0 0 0

0 0 −ψj
α

ψj


=



0 0
βh(ψj−1)−1

ακ

1−βh(ψj−1)

κ

0 0 − 1
α

1

0 0 0 0

0 0 −h(ψj−1)

α
h(ψj−1)


given b̃0 = b̄T ∗ where ψj = h(ψj−1) = κσφaπ+σφax+1

βσφax+β+κσ−βψj−1+1
.

Once again h(ψ) is quadratic and there are two roots of h(ψ) − ψ = 0, ψA < 1 < ψH .

Define ψU = (βσφax + β + κσ + 1)/β > 1. Then, h′(ψ) > 0 for all ψ < ψU , limψ→−∞h(ψ) = 0,

which implies h(ψ) > ψ for all ψ < 0. Further, h(0) > 0, h(1) < 1, and h(ψ) > ψ as

ψ → ψU if and only if φaπ <
κ+(β−1)φax

κ
. Thus, 0 < h′(ψA) < 1 < h′(ψH). Therefore, given since

−1 < ψ0 = ψT ∗ < 1 we have ψj → ψA =
−
√

4κσ(1−βφaπ)+(βσφax+β+κσ−1)2+βσφax+β+κσ+1

2β
.

The IE-stability condition for the corresponding Φ̄(θTa) is given in the text and labeled as
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b̄2 and satisfies the necessary condition.

Mathematica notebooks that provide direct computations are available in the online ap-

pendix. �

Proof of Proposition 4 We first prove the following Lemma. The proof of the Lemma

closely follows the proof of Proposition 1 of McClung (2020).

Lemma 1. The IE-stability condition in Theorem 2 is the local asymptotic stability condition

for a fixed point of (41), (42), and (43) for ξt = 1, . . . , S.

Proof: We define z̄j = (z̄j(1), . . . , z̄j(S)) for z = a, b, c, and Ξa(ξt, b̄j), and the model’s struc-

tural matrices (e.g. Aa(ξt), Ba(ξt)) as in the main text. We can express (41), (42), and (43)

for ξt = 1, . . . , S as Φj = T (Φj−1) where Φj = (āj, b̄j, c̄j). Let Φ̄ denote a fixed point of the

T-map (41), (42), and (43) for ξt = 1, . . . , S: Φ̄ = T (Φ̄). If T is continuously differentiable

in some neighborhood of Φ̄, then let DT (Φ̄) denote the Jacobian matrix of first derivatives of

T evaluated at Φ = Φ̄. If all eigenvalues of DT (Φ̄) are less than one in modulus, then Φ̄ is

locally asymptotically stable (i.e. ΦN = T (ΦN−1)→ Φ̄ as N →∞ given Φ0 in an appropriate

neighborhood of Φ̄; see Chapter 5 and Proposition 5.2 of Evans and Honkapohja (2001) for

additional information). We proceed by direct computation of DT (Φ̄).

To compute DT (Φ̄), note that T (Φ) = (Ta(ā, b̄), Tb(b̄), Tc(b̄, c̄)). The system Tb(b̄) decouples

from the remaining T-map equations (i.e. the evolution of b̄j does not depend on āj, c̄j) allowing

for separate computation of DTb(b̄) = ∂Tb(b̄)

∂b̄
evaluated at Φ̄. To solve for DTb(b̄), we linearize

Tb(b̄) at the fixed point Φ̄, vectorize the linearized system and use the following identification

rule to identify DTb: if vec(dTb) = Qvec(db̄) then Q = DTb, where db̄ = (db̄(1), db̄(2), . . . , db̄(S))

and dTb is the linearized equations. Noting that d(G(X)−1) = −G(X)−1(dG)G(X)−1, we have

dTB =



(Ξa(1, b̄)
−1(
∑S

j=1 p1jBa(1)db̄(j))Ξa(1, b̄)
−1Aa(1))′

(Ξa(2, b̄)
−1(
∑S

j=1 p2jBa(2)db̄(j))Ξa(2, b̄)
−1Aa(2))′

...

(Ξa(S, b̄)
−1(
∑S

j=1 pSjBa(S)db̄(j))Ξa(S, b̄)
−1Aa(S))′



′

Use the rule: vec(ABC) = C ′⊗Avec(B), the identification rule, and the fact that Ξa(i, b̄)
−1Aa(i) =
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b̄(i) to obtain:

DTb(b̄) =


p11b̄(1)′ ⊗ (Ξa(1, b̄)

−1Ba(1)) · · · p1S b̄(1)′ ⊗ (Ξa(1, b̄)
−1Ba(1))

...
. . .

...

pS1b̄(S)′ ⊗ (Ξa(S, b̄)
−1Ba(S)) · · · pSS b̄(S)′ ⊗ (Ξa(S, b̄)

−1Ba(S))


≡

⊕Sk=1b̄(k)′ ⊗

(
I −Ba(k)

S∑
h=1

pkhb̄(h)

)−1

Ba(k)

 (P ⊗ In2)

Now turn to the equation for ā. It is helpful to rearrange ā as ã = (ā(1)′, ā(2)′, . . . , ā(S)′)′.

This allows us to express Ta(ā, b̄) as:

Ta(ā, b̄) =


p11Ξa(1, b̄)

−1Ba(1) · · · p1SΞa(1, b̄)
−1Ba(1)

...
. . .

...

pS1Ξa(S, b̄)
−1Ba(S) · · · pSSΞa(S, b̄)

−1Ba(S)

 ã+


Ξa(1, b̄)

−1Γa(1)

...

Ξa(S, b̄)
−1Γa(S)



=

⊕Sk=1

(
I −Ba(k)

S∑
h=1

pkhb̄(h)

)−1

Ba(k)

 (P ⊗ In) ã+


Ξa(1, b̄)

−1Γa(1)

...

Ξa(S, b̄)
−1Γa(S)


Using the same methods as before we obtain:

DTa(ā, b̄) =

⊕Sk=1

(
I −Ba(k)

S∑
h=1

pkhb̄(h)

)−1

Ba(k)

 (P ⊗ In)

Finally, we consider the equation for c̄:

Tc(b̄, c̄) =



(Ξa(1, b̄)
−1(
∑S

j=1 p1jBa(1)c̄(j)ρa(j) +Da(1)))′

(Ξa(2, b̄)
−1(
∑S

j=1 p2jBa(2)c̄(j)ρa(j) +Da(2)))′

...

(Ξa(S, b̄)
−1(
∑S

j=1 pSjBa(S)c̄(j)ρa(j) +Da(S)))′



′
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Using the same methods as before we obtain:

DTc(b̄, c̄) =
S∑
k=1

ek ⊗ (pk1ρa(1)′ . . . pkSρa(S)′
)
⊗

(I −Ba(k)
S∑
h=1

pkhb̄(h)

)−1

Ba(k)


where ek is a S × 1 vector with 1 in its k-th entry and zeros elsewhere. It is straightforward

to show that the eigenvalues of DT (Φ̄) are the eigenvalues of DTa(ā, b̄), DTb(b̄), and DTc(b̄, c̄).

Hence, the local stability conditions associated to a fixed point of (41)-(43) are the IE-stability

conditions reported in Theorem 2. �.

Proof of Proposition 4: We establish boundedness as ∆p →∞. Recall that yss, the steady

state of the model when t < T a, does not depend on ξt. Therefore, we can write the impact of

an FGA {θi}i=Ta,T ∗ using equations (41), (42), and (43) as:

|yss − IE [yTa ] | = |yss − IE
[
āj(ξt) + c̄j(ξt)ωTa + b̄j(ξt)yTa−1

]
|

= |yss −
S∑
i=1

π̄i
[
āj(i) + b̄j(i)yss

]
|

=

∣∣∣∣∣(I −
S∑
i=1

π̄ib̄j(i))yss −
S∑
i=1

π̄iāj(i)

∣∣∣∣∣ ,
where π̄i is the marginal density of Markov state i and | · | is any p-norm. By the triangle

inequality, it follows that

∣∣∣∣∣(I −
S∑
i=1

π̄ib̄j(i))yss

∣∣∣∣∣ +

∣∣∣∣∣
S∑
i=1

π̄iāj(i)

∣∣∣∣∣ ≥
∣∣∣∣∣(I −

S∑
i=1

π̄ib̄j(i))yss −
S∑
i=1

π̄iāj(i)

∣∣∣∣∣ .
If all three conditions are satisfied, then the recursion given by equations (41) - (43) are well

defined with initial condition Φ̄0(θT ∗). By Lemma 1, Φ∆p → Φ̄(θTa) as ∆p →∞. Therefore, in

the limit as ∆p goes to infinity the impact of the FGA can be no larger (in magnitude) than∣∣∣(I −∑S
i=1 π̄ib̄(θTa , i))yss

∣∣∣+
∣∣∣∑S

i=1 π̄iā(θTa , i)
∣∣∣. �
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A2 The Fisher model

Sections 2 and 3 use a Fisher model of inflation determination. This appendix includes more

discussion of the equilibrium properties of the model when there is active fiscal policy.

The Fisher model is an endowment economy (see Leeper and Leith, 2016 for the micro-

foundations of the model). Inflation is determined in the economy by combining the household’s

Euler equation with rules for fiscal and monetary policy, which gives rise to the following

linearized system of equations:

it = φπt + ī

it = IEtπt+1

bt = δbt−1 + it − β−1πt

For the simple example in section 3, we assume that 0 < φ = φa < 1, δ = δa > 1 for

T a ≤ t < T ∗, ī 6= 0 in t = T ∗ − 1 and otherwise ī = 0. The system for T a ≤ t < T ∗ can be

expressed as:

yt = Γa + Aayt−1 +BaIEtyt+1

where y = (π, b)′ and

Ba =

 1
φa

0

1− 1
βφa

0

 Aa =

0 0

0 δa


and Γa = (− ī

φa
, ī
βφa

)′ if t = T ∗ − 1, otherwise Γa = 02×1. Because ī = 0 when t = T a, the θTa

regime admits two MSV solutions of the form: yt = b̄(θTa)yt−1, where, ā(θTa) = 02×1 and

b̄(θTa) =

0 φa−δa
φa−β−1

0 φa

 and b̃(θTa) =

0 0

0 δa

 .

One can verify through explicit computation that the largest eigenvalues of the first solution for

DTa(ā, b̄) and DTb(b̄) are 1/δa < 1 and φa/δa < 1, respectively. Hence, φ̄(θTa) = (02×1, b̄(θTa))
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is IE-stable.A1 Now we discuss the implications of two alternative assumptions about the θT ∗

regime.

Case. Suppose φ = φa, δ = δa for t ≥ T ∗. Then the unique dynamically stable MSV

solution for t ≥ T ∗ is given byA2

yt =

0 φa−δa
φa−β−1

0 φa

 yt−1 = b̄(θT ∗)yt−1 = b̄(θTa)yt−1

Thus the unique stable terminal solution is given by Φ0(θT ∗) = (02×1, b̄(θT ∗)). We now obtain

the FGA solution. We first obtain the solution for b̄j. Because b̄(θT ∗) = (I −Bab̄(θT ∗))−1Aa =

b̄(θTa), we have b̄1 = (I −Bab̄(θT ∗))−1Aa = b̄(θTa) which implies b̄j = b̄(θTa) for all j ≥ 0. Now

consider the recursion for āj. Since b̄j = b̄(θT ∗) for all j we have:

āj = (I −Bab̄(θT ∗))−1Baāj−1 + (I −Bab̄(θT ∗))−1Γa

= DTa(ā, b̄)āt−1 + (I −Bab̄(θT ∗))−1Γa

As shown above, the eigenvalues of DTa(ā, b̄) are strictly inside the unit circle and Γa = 02×1

for all j > 1. Therefore āj → 02×1 as j → ∞. This proves that Φj → Φ̄(θTa) as j → ∞ given

Φ0 = Φ0(θT ∗). The forward guidance puzzle is absent.

Case. Now suppose φ = φ∗ > 1 and δ = δ∗ < 1 for t ≥ T ∗. Then the unique dynamically

stable MSV solution for t ≥ T ∗ is given byA3

yt =

0 0

0 δ∗

 yt−1 = b̃(θT ∗)yt−1

Thus the unique stable terminal solution is given by Φ0(θT ∗) = (02×1, b̃(θT ∗)). We now obtain

A1The θTa regime admits two MSV solutions. The second is given by πt = 0, and bt = δabt−1. It is easy to
show that the IE-stability eigenvalue in this case is 1/φa > 1, and therefore this equilibrium is not IE-stable.

A2By Proposition 1, this MSV solution is the unique dynamically stable rational expectations solution. Note
that the θT∗ regime admits two MSV solutions. The second is given by πt = 0, and bt = δabt−1. Because δa > 1
the second MSV solution is not a dynamically stable equilibrium. Further note that for simplicity we assume
φ = φa, δ = δa for t ≥ T ∗, but qualitatively similar results emerge if δ > 1 > φ > 0 but φ 6= φa, δ 6= δa for
t ≥ T ∗.

A3The θT∗ regime admits two MSV solutions. The second is given by πt = φ∗−δ∗
φ∗−β−1 bt−1, and bt = φ∗bt−1.

Because φ∗ > 1 the second MSV solution is not a dynamically stable equilibrium.
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the FGA solution. We first obtain the solution for b̄j. Starting from j = 1:

b̄1 = (I −Bab̃(θT ∗))−1Aa =

0 0

0 δa

 = b̃(θT ∗)

Iterating forward, we see that b̄j = b̃(θT ∗) for j ≥ 0. This shows that Φj does not converge to

Φ̄(θTa); condition (3) of Proposition 2 fails. Moreover, one can easily verify that Bab̄j = 02×2

for j ≥ 0 and therefore āj evolves according to

āj = Baāj−1 + Γa = Bj−1
a Γa =

 − ī
(φa)j

ī(1−βφa)
(φa)j


where the second and third equality follow from the fact that Γa = 0 for j > 1 and a0 = 02×1.

Notice that πTa = − ī
(φa)∆p → +/−∞ as ∆p = T a − T ∗ →∞. We obtain the same solution as

in the section 2 example under RE and the puzzle emerges.A4

As emphasized in the text, δ > 1 is a consequence of fiscal irresponsibility. If δ > 1

in all periods, then debt-stabilizing inflation is necessary for a stable equilibrium to exist.

This debt-stabilizing role for inflation rules out unbounded unanticipated changes in inflation,

e.g. following a forward guidance announcement, and this solves the puzzle (as found by

Cochrane (2017)). However, this is not the case if the fiscal authority is expected to stabilize

the debt stock in the future (δ < 1 for t ≥ T ∗). Agents understand that debt stability comes

from fiscal revenues in the long run (t ≥ T ∗) and this permits a unique equilibrium in which

inflation plays no systematic debt-stabilizing role in any period. It is the standard “Ricardian”

solution considered in our section 2 example and by most other papers in the literature. Fiscal

sustainability considerations do not pin down inflation in this equilibrium, and this permits

unbounded changes in inflation at the time of announcement. The puzzle emerges.

We can also directly appeal to the mathematical structure of the system to characterize

why the puzzle arises when δ < 1 for t ≥ T ∗. The model admits a “block-recursive” structure;

the equation for inflation does not depend directly on lagged, current or expected debt, and

hence equilibrium inflation will not depend on debt in the T a regime unless it also depends

A4Note that here we assume the shock occurs at t = T ∗ − 1 whereas the shock is assumed to occur at T ∗ in
the section 2 example. The results are not sensitive to the exact timing of the shock.
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on debt in the T ∗ regime. Cho (2021) describes how the block-recursive structure of the

same model without an anticipated structural change makes it difficult to solve the model

forward.A5 Specifically, in the case δ > 1 and φ < 1, one cannot obtain the unique dynamically

stable MSV solution by solving the model forward (i.e. by iterating on the T-map; see Cho

and Moreno (2011) and Cho (2016)) unless the solution recursion is modified to ensure that

expected inflation depends on debt in the recursion. In contrast, our model is a piecewise linear

model involving an anticipated structural change, and importantly, we obtain a unique rational

expectations equilibrium in both cases described above. The block-recursive structure is an

important feature of our model that identifies the assumptions needed in the announcement

and terminal regimes to ensure that the puzzle is absent in the resulting unique equilibrium.

A3 Simple sunspot example

Consider the following bivariate system of expectational difference equations

yt =
1

φy
IEtyt+1 +

1

φx
IEtxt+1 + εt (A1)

xt =
1

φx
IEtxt+1, (A2)

where φy 6= φx. To capture both determinate and indeterminate FGA solutions, we study the

BN augmented system. Specifically, and without loss of generality, we assume that expectations

of xt may be driven by a sunspot process vt. In order to account for this possibility, we append

st =
1

α
st−1 − vt + xt − IEt−1xt, (A3)

to the system of equations. By choosing the value of α and φx or φy appropriately, we can move

between the determinate and indeterminate solutions of the model.

The system is written compactly as

Ã0zt = Ã1zt−1 + B̃0IEtzt+1 + D̃0εt,

A5Cho (2021)’s insights apply to both the model with fixed parameters, δ and φ, and to models that feature
Markov-switching in those parameters (e.g. see section 6 of this paper).
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where zt = (yt, xt, st, IEtxt+1)′, εt = (εt, vt)
′,

Ã0 =



1 0 0 0

0 1 0 0

0 −1 1 0

0 0 0 1


, Ã1 =



0 0 0 0

0 0 0 0

0 0 1
α
−1

0 0 0 0


, B̃0 =



φ−1
y φ−1

x 0 0

0 φ−1
x 0 0

0 0 0 0

0 1 0 0


, D̃0 =



1 0

0 0

0 −1

0 0


.

RE solutions to the above take the form of

zt = a+ bzt−1 + cεt

and must satisfy the following the conditions: a = (I − B̃b)−1B̃a, b = (I − B̃b)−1Ã, and

c = (I − B̃b)−1D̃, where Ã = Ã−1
0 Ã1, B̃ = Ã−1

0 B̃0, and D̃ = Ã−1
0 D̃0. The quadratic in b has

closed form solutions, which define the RE solutions:

b̄1 =



0 0 0 0

0 0 0 0

0 0 1
α
−1

0 0 0 0


, b̄2 =



0 0 − φy
α(φy−φx)

φy
φy−φx

0 0 − 1
α

1

0 0 0 0

0 0 −φx
α

φx


The first solution, b̄1, is the unique RE solution when the model is determinate, which implies

yt = εt and xt = 0. The st variable is an exogenous process that does not affect yt or xt in this

case. The second solution, b̄2, is an indeterminate solution that permits coordination on the

sunspot vt. The solution in this case is

yt =
φy

φy − φx
xt + εt (A4)

xt = φxxt−1 + vt. (A5)
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A3.1 Example of IE-stability analysis

To analyse the Forward Guidance properties of the model, we first calculate the IE-stability

conditions for each equilibria using

DTb(b̄) =
[
(I − B̃b̄)−1Ã

]′
⊗
[
(I − B̃b̄)−1B̃

]
and

DTa(ā, b̄) = (I − B̃b̄)−1B̃.

The eigenvalues for the two solutions are

Eig(DTb(b̄
1)) =

{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

αφx
,

1

αφy

}
, Eig(DTa(ā

1, b̄1)) =

{
0, 0,

1

φx
,

1

φy

}

Eig(DTb(b̄
2)) =

{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, αφx,

φx
φy

}
, Eig(DTa(ā

2, b̄2)) =

{
0, 0, α,

1

φy

}
.

When α > 1, the determinate θTa solution, b̄1, is selected when using standard solution tech-

niques. IE-stability requires that |φx| > 1 and |φy| > 1, which coincide exactly with the

conditions for determinacy.

When α < 1 and |φx| < 1, standard solution techniques select the sunspot solution. The

IE-Stability conditions in this case reduces to |φy| > 1. When this solution is selected it is

possible that the forward guidance puzzle is not present. The indeterminacy implied by φx no

longer matters for the IE-stability condition.

This illustrates the confusion discussed in the introduction, which ascribes indeterminacy to

the forward guidance puzzle. The determinacy or indeterminacy of the θTa regime just happen

to coincide with IE-stability conditions in the first case. But in the second case, IE-stability

and determinacy do not imply the same conditions.

To see that the IE-stability condition is the relevant condition for diagnosing a forward

guidance puzzle, it is useful to work through an example. Consider an FGA where a temporary

change to xt is announced at date t = T a but which occurs at time t = T ∗.A6 To induce

A6Whether the change occurs in yt or xt does not affect the conclusion of this analysis.

54



Forward Guidance Puzzle

indeterminacy in the θT ∗ regime, we assume that |φx| < 1 such that

xt = φxxt−1 + vt

for t > T ∗. The sunspot solution for t > T ∗ follows equations (A4) and (A5). The structural

equations at the t = T ∗ are

yt =
1

φy
IEtyt+1 +

1

φx
IEtxt+1 + εt

xt = γ +
1

φx
IEtxt+1,

where γ is the anticipated change. The backward recursion starts by constructing the expec-

tations that prevail in time period t = T ∗ given the above equations and the sunspot terminal

solution:

IEtxT ∗+1 = φx(xT ∗ − γ) and IEtyT ∗+1 =
φy

φy − φx
φx(xT ∗ − γ).

Then, substituting these beliefs into the structural equations, we recover

IETayT ∗ =
1

φy

(
φy

φy − φx
φx(xT ∗ − γ)

)
+

1

φx
(φx(xT ∗ − γ))

IETaxT ∗ = γ +
1

φx
φx(xT ∗ − γ) = φxxT ∗−1,

where the last equality is obtained because we assume that agents coordinate on a sunspot. Fi-

nally, simplifying and working our way back through time we can recover the following solution

path

IETayT ∗−1 =
1

φy

(
φy

φy − φx

)
(−γ) +

φy
φy − φx

xT∗−1

IETaxT ∗−1 = φxxT ∗−2

...

yTa =

(
1

φy

)T ∗−Ta (
φy

φy − φx

)
(−γ) +

φy
φy − φx

xTa

xTa = φxxTa−1 + εTa ,
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where the last period is the contemporaneous effect of the announcement. The impact of the

FGA is given by (
1

φy

)∆p
(

φy
φy − φx

)
γ.

The impact is bounded as ∆p = T ∗ − T a → ∞ when |φy| > 1. Exactly as predicted by

IE-stability. The indeterminacy caused by φx no longer plays a role. The reason that this

occurs is because we assume that the agents coordinate on the sunspot in the terminal regime.

The agents’ beliefs about the evolution of xt from that point on are pinned down by the

sunspot process. They are “predetermined” by last period’s realizations in t = T a. They no

longer respond at all on announcement of the policy. From the standpoint of calculating the

expectations of yt, the evolution of xt is exogenously determined.

A4 Medium Scale model robustness

Figure A6 shows the simulated response of inflation, output, and the interest rate to anticipated

100-basis point decreases in the interest rate at different horizons under an interest rate peg

in the θTa regime combined with either a determinate monetary policy announced in the θT ∗

regime or a continuation of the interest rate peg in a sunspot equilibrium. The value of the

reaction coefficient for inflation in the determinate case is set at the posterior mean reported

by Smets and Wouters (2007) (φ∗π = 2.04), while the other parameters of the policy rule are set

to zero. For the sunspot case, all parameters of the policy rule are set to zero. The remaining

parameters of the model are set to the mean posterior values reported in Smets and Wouters

(2007).

The figure shows that the assumption of a return to a determinate policy regime leads to

the forward guidance puzzle. It also generates a reversal puzzle in this case. For the case where

the anticipated interest rate change is in 20 quarters, inflation falls at the announcement rather

than rises. This additional puzzle was also pointed out by Carlstrom et al. (2015). It occurs

when the unstable eigenvalues are complex. The assumption of an indefinite interest rate peg

in the sunspot equilibrium does not lead to the forward guidance puzzle.

Figure A7 shows the same experiment but for a case of an actual announced zero lower

bound regime. Here the interest rate is dropped from a positive steady state to zero and it is

announced that it will remain at zero for 4, 6, 8, 10, or 12 quarters. The drop in the interest rate
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Figure A6: Forward Guidance Announcements in the Smets and Wouter’s model
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Notes: The top figures shows the paths of output, inflation, and interest rates for anticipated 100-basis point
monetary policy shocks with ∆p = 10, 20, ... , 70. The bottom figures show the impact using the L∞ norm for
∆p = 1, ..., 300.

Figure A7: Forward Guidance Announcements at the ZLB in the Smets and Wouter’s model
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Notes: The figure shows the paths of output, inflation, and interest rates for anticipated bind of the zero lower
bound for ∆p = 4, 6, 8, 10, and 12 quarters.

in this case is 400+ basis points, which causes a much larger output and inflation response in the

determinate terminal regime case. This illustrates the type of stimulus that would be provided

by making these announcements at the zero lower bound. Promises to keep interest rates at
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zero beyond the duration of a shock that caused the zero lower bound to bind are in effect

promises of future 400+ basis point monetary policy interventions in the absence of further

shocks in this model. A forward guidance announcement of this kind is highly stimulatory in

the determinate case. In the indeterminate case, policy is an interest rate peg in both the zero

lower bound regime and afterwards. The central bank moves the interest rate peg to zero and

announces a promised duration of zero interest rates. It then moves the interest rate back to

steady state and pegs the rate there. In this case, the policy increases output but results in a

mild deflation. There is no forward guidance puzzle.
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