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A1 Supplementary material for section 2

A1.1 Proofs

Theorem 1

Proof We prove the optimization formulation. The MSE formulation follows by definition

of the optimal solution, and the Jensen-type inequality formulation follows by substituting

the explicit solutions.

(a) When comparing the unconditional problem

min
w
w′ E(eT+he

′
T+h)w

and the conditional problem

min
w
w′ E(eT+he

′
T+h|IT )w,

∗Corresponding author contact information: School of Economics, The University of Sydney, christo-
pher.gibbs@sydney.edu.au.
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it is useful to consider a function ψ(w) = w′ E(eT+he
′
T+h|IT )w. We have

min
w

ψ(w) ≤ ψ(v) for any v;

therefore,

E[min
w

ψ(w)] ≤ E[ψ(v)]

and

E[min
w

ψ(w)] ≤ min
v

E[ψ(v)],

which is equivalent to

E[min
w

ψ(w)] ≤ min
w

E[ψ(w)].

In the original notation, we have

E
[
min
w
w′ E(eT+he

′
T+h|IT )w

]
≤ min

w
E
[
w′ E(eT+he

′
T+h|IT )w

]
,

which provides us with

E
[
min
w
w′ E(eT+he

′
T+h|IT )w

]
≤ min

w
w′ E(eT+he

′
T+h)w.

The optimization problems have explicit solutions; thus,

E

[
1

ι′
[
E(eT+he′T+h|IT )

]−1
ι

]
≤ 1

ι′
[
E(eT+he′T+h)

]−1
ι

or

E

(
1

ι′[Σξ + bT b′T ]−1ι

)
≤ 1

ι′Σ−1e ι
.

In other words, using the predictability of the forecast errors is beneficial because we

achieve a lower MSE in expectation.

(b) The proof is similar to part (a) and simply requires substituting the unconditional

expectation with the expectation conditional on JT .
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(c) The proof follows from part (b) if ψ(w) = E[L(ec,T+h)|IT ].

Theorem 2

Proof There are several critical elements that are affected by increasing γ. Two simple terms

are Ση = γ2Ση0 and b̂T = b+ γη0. For other terms, E(ηT |b̂T ), var(ηT |b̂T ) in MSE(w††) and

E(bT |b̂T ), var(bT |b̂T ) in MSE(w(b̂T )), we need to know the conditional moments.

Without loss of generality, we prove the theorem in a special when bT and ηT are normal

and independent, i.e. 
bT

ηT

b̂T

 ∼ N
0,


Σb 0 Σb

0 Ση Ση

Σb Ση Σb + Ση


 .

The conditional distributions are

bT |b̂T ∼ N(Σb(Σb + Ση)−1b̂T ,Σb − Σb(Σb + Ση)−1Σb)

and

ηT |b̂T ∼ N(Ση(Σb + Ση)−1b̂T ,Ση − Ση(Σb + Ση)−1Ση).

They are affected by increasing γ in the following way.

E(bT |b̂T ) = Σb(Σb + γ2Ση0)−1(b+ γη0)→ 0,

var(bT |b̂T ) = Σb − Σb(Σb + γ2Ση0)−1Σb → Σb,

E(ηT |b̂T ) = γ2Ση0(Σb + γ2Ση0)−1(b+ γη0)→∞,

var(ηT |b̂T ) = γ2Ση0 − γ2Ση0(Σb + γ2Ση0)−1γ2Ση0 → 0.

We can now see that

MSE(w††) =
ι′[Σξ + γ2Ση0 ]−1

[
Σξ + var(ηT |b̂T ) + E(ηT |b̂T ) E(η′T |b̂T )

]
[Σξ + γ2Ση0 ]−1ι

(ι′[Σξ + γ2Ση0 ]−1ι)2
→∞
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and MSE(w(b̂T )) =

=
ι′[Σξ + γ2Ση0 + (b+ γη0)(b+ γη0)′]−1

[
Σξ + var(bT |b̂T ) + E(bT |b̂T ) E(b′T |b̂T )

]
[. . . ]−1ι

(ι′[Σξ + γ2Ση0 + (b+ γη0)(b+ γη0)′]−1ι)2

→ ι′[Ση0 + η0η
′
0]−1 [Σξ + Σb] [Ση0 + η0η

′
0]−1ι

(ι′[Ση0 + η0η′0]−1ι)2
.

This proves the theorem for normal and independent bT and ηT . If bT and ηT are not

independent, i.e., cov(bT ,ηT ) = Σbη, then it will be affected by increasing γ, but the effect

is linear, i.e., Σbη = γΣbη0 , and it will be dominated by quadratic terms, such as γ2Ση0 and

γ2η0η
′
0.

Finally, we observe that in the case of the elliptical distribution for (bT ,ηT , b̂T )′, the

formulae for the conditional mean and the conditional variance remain the same, so the

result holds in the general case.

Theorem 3

Proof The proof follows from the fact that the relationship between

MSE(w††) =
1

ι′[Σξ + Ση]−1ι

and

MSE(w∗) =
1

ι′[Σξ + E(bTb′T )]−1ι

is the same as the relationship between Ση and E(bTb
′
T ).

A1.2 Specific models for bT

A1.2.1 MA(1) model

If bT = θξT , then Theorem 1 guaranties that E(MSE(w∗(IT ))) ≤ MSE(w∗), which is equiv-

alent to

E

(
1

ι′[Σξ + θ2ξT ξ′T ]−1ι

)
≤ 1 + θ2

ι′Σ−1ξ ι
.
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A stronger inequality without the expectation can hold in certain cases. For example, due

to positive definite θ2ξT ξ
′
T ,

1

ι′Σ−1ξ ι
<

1

ι′[Σξ + θ2ξT ξ′T ]−1ι
.

However if the left hand side is multiplied by (1 + θ2), it can be

1

ι′[Σξ + θ2ξT ξ′T ]−1ι
<

1 + θ2

ι′Σ−1ξ ι

depending on the parameters.

A1.2.2 AR(1) model

Similarly, if bT = φeT , then Theorem 1 guaranties that E(MSE(w∗(IT ))) ≤ MSE(w∗), which

is equivalent to

E

(
1

ι′[Σξ + φ2eT e′T ]−1ι

)
≤ 1

1− φ2

1

ι′Σ−1ξ ι
.

Again, the positive definiteness of φ2eT e′T ,

1

ι′Σ−1ξ ι
<

1

ι′[Σξ + φ2eT e′T ]−1ι
,

but the division with (1− φ2) can produce

1

ι′[Σξ + φ2eT e′T ]−1ι
<

1

1− φ2

1

ι′Σ−1ξ ι

depending on the parameters.

One example is when bT = (φeT,1, 0 . . . 0)′, i.e., only the first element follows an AR(1)

process while the other forecasts are conditionally unbiased, and Σξ = σ2
ξI, i.e., the forecasts

have the same variance and uncorrelated with each other. In this case a stronger version of

Theorem 1, i.e., the inequality without expectation, will hold if φ(1− φ) < σ2
ξ .
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A1.3 Monte Carlo study

We put forward three Monte Carlo exercises to numerically illustrate the point that noisy

correction leads to decreasing forecast accuracy while using that same information to correct

weights does not. The first two are simple Monte Carlo exercises in an i.i.d. environment.

The first considers an omitted variable bias where we vary the importance of that omitted

variable to the data generating process. The second demonstrates how bias correction and

conditionally optimal weights change as we vary the signal to noise ratio in the conditional

bias when only a noisy signal is available.

For the third exercise, we consider a more complicated data generating process of a

conditional location-scale model and follow Lima and Meng (2017) to investigate the fore-

casting power of conditionally optimal weights in a weak predictor environment, where there

are many competing forecasting models. This environment also allows us to explore the

properties of conditionally optimal weights when we vary the number of combined forecasts,

n.

A1.3.1 Omitted variable bias

The data generating process (DGP) we consider follows

yt+1 = xt + zt + µt+1, (A1)

where xt and zt are independent and follow i.i.d. mean zero normal random processes with

unit variance and µt+1 is error term whose variance we will vary. We assume that the fore-

caster does not know the DGP and considers the three following model specifications to form

one-step-ahead forecasts: regression of yt+1 on xt that produces forecast f1,t+1; regression

of yt+1 on zt that produces forecast f2,t+1; regression of yt+1 on xt and zt that produces

forecast f3,t+1. This setup provides an environment where the unconditional optimal weights

out-perform the equally weighted forecast.

We assume there is an omitted variable such that µt+1 is composed of two components
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µt+1 = bt + ζt+1, where bt is i.i.d. and mean zero but available to the forecasters and ζt

has unit variance. While forecasters are sure that xt and zt are useful for forecasting yt,

they are uncertain about bt. We reinforce this by assuming that the variance of bt is small

relative to xt and zt. We then compare whether bt is more useful to include to bias-correct

or to construct conditionally optimal weights. Specifically, we compare (1) equal weights,

(2) the unconditional optimal weights as in Bates and Granger (OW), (3) the conditionally

optimal weights constructed using bt (COW), and (4) the classical optimal weights for the

bias-corrected forecasts constructed using bt (BC-OW). In the last strategy, we first attempt

to remove the bias of the individual forecasts using bt and then construct unconditional

optimal combination weights based on the biased-corrected forecasts as described in Section

2.2.

We compare the combined forecast by conducting a standard pseudo-out-of-sample fore-

casting exercise, where we partition the simulated data into in-sample and out-of-sample sub-

sets and recursively forecast the out-of-sample subset by re-estimating the forecast models

and recalculating the weights in each period. To mimic how one would implement estimated

weights in practice, the in-sample period is partitioned into two separate subperiods: 20

periods to obtain initial estimates by OLS of the forecast model parameters; and 20 periods

to obtain initial recursive forecast errors for the three models to construct initial estimates

of the bias and to construct initial estimates of the weights. We use the following model for

bias prediction:

yt+1 − fi,t+1 = ci + βibt + εi,t+1,

where i = 1, 2, or 3. We run 5,000 simulations for each case.

Figure A1 shows the results for recursive out-of-sample forecasts for 25 and 50 periods

(T ). From the graph we can see that when the variance of the bias is small relative to

the DGP that bias-corrected forecasts are the least accurate forecasts (recall xt, zt, and ζt

each have unit variance). In the small samples we consider, when the bias is small, there
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is not enough power to reject the null hypothesis βi = 0 at conventional significance levels.

Attempts to correct the bias using bt in these cases introduces more noise to the forecasts and

accuracy suffers. However, as one would expect, as the importance of bt grows, it becomes

more useful for forecasting. If the variance is large enough, the forecast suffers greatly by

not including bt in the forecast. Conditionally optimal weights, however, provide a uniform

forecast throughout the sample. Because any noise in the bias predictions balance in the

numerator and the denominator of the weights, the forecasts are less affected when bias is

small, and predictions of the bias are inaccurate.

Lastly, the conditionally optimal weights are applied to the uncorrected forecasts, which

omit bt. Therefore, there is a clear limit to how accurate the combined forecasts can be

because bt is a driver of the DGP. The advantage of conditionally optimal weights is that

one can use bt even when it has a tenuous relationship to the DGP to improve forecast

accuracy in finite samples without risking a significant loss in forecast accuracy.

A1.3.2 Signal to noise ratio of the bias

In this scenario, we add bias to this forecasting problem in the same way described in Section

2.2 by assuming that µt+1 is composed of two components: µt+1 = bt + ζt+1, of which only

a noisy signal of bt, b̂t = bt + ηt, is available. Therefore, whether b̂t is useful for forecasting

yt+1 will depend on the nature ηt. One interpretation of ηt is that it represents measurement

issues such as with GDP and its components, which are themselves based on estimates that

undergo frequent revisions.

We assume that bt, ζt and ηt are independent from each other and follow i.i.d normal

random processes. We then fix ζt to have a unit variance and vary the relative variances

of bt and ηt and the size of the out-of-sample period (T ) to compare out-of-sample mean

square forecast errors for four different combination strategies: (1) equal weights, (2) the

unconditional optimal weights as in Bates and Granger (OW), (3) the conditionally optimal

weights constructed using b̂t (COW), and (4) the classical optimal weights for the bias-

corrected forecasts constructed using b̂t (BC-OW).
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Figure A1: Monte Carlo Simulation
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T = 25 T=25
σb COW EW BC-OW

0.01 0.996 1.052 1.075
0.03 0.995 1.048 1.074
0.05 0.996 1.051 1.077
0.08 0.995 1.050 1.067
0.10 0.993 1.050 1.063
0.20 0.994 1.040 1.037
0.40 0.993 1.027 0.930

T=50
σb COW EW BC-OW

0.01 0.998 1.098 1.058
0.03 0.998 1.092 1.058
0.05 0.998 1.096 1.058
0.08 0.998 1.094 1.052
0.10 0.997 1.095 1.047
0.20 0.997 1.087 1.018
0.40 0.999 1.070 0.915

Notes: Monte Carlo simulation comparing relative MSFE of bias-corrected forecasts combined with optimal weights (BC-
OW), conditionally optimal weights forecasts (COW), and equal weights (EW). MSFE are shown relative to an optimal
weight (OW) forecast.

We again compare the combined forecast by conducting a standard pseudo-out-of-sample

forecasting exercise, where we partition the simulated data into in-sample and out-of-sample

subsets and recursively forecast the out-of-sample subset by re-estimating the forecast models

and recalculating the weights in each period. We use the same model for bias prediction as

in previous section A1.3.1 and we again run 5,000 simulations for each case.

Figure A2 summarizes the results. When there is no noise, BC-OW yields the lowest

mean squared forecast error (MSFE). But as the variance of the noise increases, the forecast

accuracy of this strategy falls, and COW becomes the best performing strategy. Because

we assume that xt, zt, bt, and ζt are uncorrelated, the bias affects each model the same way

in the limit, which as we have shown in Section 2 of the paper, means that conditionally

optimal weights and unconditional optimal weights are asymptotically the same. However,
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we find that in small samples with recursive estimation, COW delivers a small improvement

over OW. As the out-of-sample period T becomes large, though, the MSFE of COW and

OW forecasts converge in this special case.

This exercise, though, is not very informative about the true forecasting power of this

approach because optimal weights easily outperform equal weights, which clearly does not

reflect reality when these strategies are used in practice. Therefore, we rely on real-time out-

of-sample forecasting evaluations to illustrate the main advantages of the proposed strategy.

Figure A2: Monte Carlo Simulation
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0 0.992 1.013 0.866
0.5 0.994 1.008 0.903
0.75 0.993 1.010 0.974
1 0.994 1.015 1.008
2 0.994 1.010 1.033
4 0.995 1.009 1.064
8 0.996 1.015 1.075

T = 50
ση/σb COW EW BC-OW

0 0.999 1.057 0.850
0.5 0.999 1.052 0.890
0.75 0.997 1.055 0.957
1 0.998 1.056 0.994
2 0.997 1.056 1.015
4 0.997 1.054 1.047
8 0.997 1.057 1.056

Notes: Monte Carlo simulation comparing relative MSFE of bias-corrected forecasts combined with optimal weights (BC-
OW), conditionally optimal weights forecasts (COW), and equal weights (EW). MSFE are shown relative to an optimal
weight (OW) forecast.

A1.4 Forecasting in a more complex environment

We now turn to a more complex data generating process to explore conditionally optimal

weights and some of the proposed alternative formulations from Section 2.3 in an environment
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with weak and partially weak predictors. For this exercise, we follow Lima and Meng (2017)

and consider the following location-scale model:

yt+1 = β0 +
∑
i

βixi,t +

(
γ0 +

∑
i

γixi,t

)
ηt+1 (A2)

i = 1, 2, 3, ..., 6; t = 1, 2, ..., 1000,

where we assume β0 = 1, ηt+1 ∼ N(0, σ2
η), and ση = 0.75. The sample size is set to 1000.

For pseudo-forecasting purposes, we partition the sample into three subsets: 1) t < 500, 2)

500 ≤ t < 901, and 3) t > 900. The first subset is the in-sample period that is used to

provide initial estimates for our individual forecast models, which we describe later. The

second subset is used for in-sample recursive forecasting to generate a sample of forecast

errors for each individual forecast model. The errors are used to create the conditional

bias estimates required for conditionally optimal weights. The final subset is the pseudo

out-of-sample period, which we recursively forecast with the individual models and forecast

combinations to evaluate the efficacy of the forecasting strategies of interest.

The number of potential predictor, xi,t, is fixed at six. We assume the predictors are

drawn from a uniform distributions over (0, 1), where, as in Lima and Meng (2017), we

consider Spearmann correlation among the predictors of ρi,j = (0, 0.1, 0.25, 0.5, 0.95). We

assume that the forecasters have access to all six variables and that they consider parsimo-

nious linear models that include different combinations of the six predictors. Specifically.

following Elliott et al. (2013) and our Section 3.3, we consider all distinct subsets of the six

predictors of size 1, 2, and 3. This leads to 41 models of the form

yt+1 = b0 + bixi,t + bjxj,t + bkxk,t + et

where for subsets of size one, bj = bk = 0 and i = 1, ..., 6; for subsets of size two, bk = 0

and there are 15 different combinations of xi,t and xj,t; and for subsets of size 3 we have 20

different combinations of xi,t, xj,t and xk,t.
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We then study combined forecasts of the 6 individual models (k = 1 in the notation of

Complete Subset Regression (CSR) of Elliott et al., 2013), 21 models comprised of all subsets

of n ≤ 2 (k = 2), and 41 models comprised of all subsets of n ≤ 3 (k = 3). The combination

strategies we consider are:

1. Conditionally Optimal Weights (see Section 2.1 of the main text)

2. Bias-corrected Optimal Weights (see Section 2.2 of the main text)

3. Bias-corrected Equal Weights (see Section 2.2 of the main text)

4. Predicted Exponential Weights with γ = 1 and 10 (see Section 2.3 of the main text)

5. Equal Weights (CSR).

For the COW and PEW forecasts, we model conditional bias as an AR(1) with a constant:

ŷi,t+1 − yt+1 = ei,t+1 = ci + ρei,t + ζt+1.

The univarate benchmark is a simple recursive average of yt.

The Monte Carlo experiment assumes weak and partially weak predictors as in the base-

line case considered by Lima and Meng with βi = γi = 0 for i = 3, 4, ..., 6 for all t, β1 = −1.5

and γ = 5 if ηt+1 ≤ φ−1(0.5), and β2 = 1.5 and γ2 = 5 if ηt+1 > φ−1(0.5), where φ−1(x)

refers to x × 100 percentile of the distribution of ηt. Finally, to add outliers it is assumed

that γ0 = ση if ηt+1 < 1.96 and γ0 = 5ση if ηt+1 > 1.96.

Table A1 shows the mean Monte Carlo results from 250 experiments that each include

100 out-of-sample forecasts. Therefore, each value shown summarizes 25,000 out-of-sample

forecasts. All results are reported relative to the univariate benchmark with the average

Clark and West (2007) test statistic from the 250 experiments shown on the right. Note that

by construction only x1,t and x2,t have any ability to forecast yt+1. The remaining predictors

are noise and provide no forecasting power above the benchmark. The forecasting power of

these two predictors wanes as the correlation among the predictors rises. The reason for this
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decline is over-fitting of the data as it becomes more difficult to distinguish which movements

in x1,t and x2,t are responsible for changes in the DGP.

The combined forecasts all show some ability to forecast yt+1 relative to the the bench-

mark forecast. However, the same pattern with respect to the correlation of the predictors

remains. When the predictors provide distinct information, the combined forecasts do well.

When the predictors become similar, over-fitting occurs and the combined forecasts lose

forecast accuracy.

Looking across the different forecast combination strategies, there is clear relationship

with combined forecast accuracy and whether the combination strategy nests optimal weights

or equal weights. The former relies on a variance-covariance estimate of the forecast errors,

while the latter specifications do not use this information. The first pattern is that optimal

methods perform best when the number of models combined (n) is small and the correlation

among the predictors is low. For example, COW and BC-OW combinations of the six single

xi,t prediction models provides the lowest MSFE among the strategies tested when ρ ≤ 0.25.

In contrast, when ρ ≥ 0.5 the best strategies rely on equal weights and combine all 41 models.

The explanation for this pattern is straightforward. The majority of the forecasts that

are combined in this exercise are noise. Only two of the six predictors contain any informa-

tion about the DGP by construction. The rest are pure noise. Averaging over that noise

with CSR, or BC-EW, zeroes it out and leads to better forecast accuracy. With COW

or BC-OW, however, the variance-covariance of the errors from the forecasts is exploited.

The addition of many nearly identical noise forecasts leads to highly correlated forecast

errors. The highly correlated forecast errors lead to near multicolinearity in the forecast

error variance-covariance estimate and instability in the estimated weights when estimated

recursively over time.

Conditionally optimal weights, however, does not rely solely on the variance-covariance

of past forecast errors. It also makes use of the estimated conditional bias. Predicted

exponential weights (PEW) makes use of just the conditional bias prediction to inform the

weights. Therefore, the method loses the information obtained in the variance-covariance
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of past forecast errors, but it removes the multicolinearity issue. Here weights are adjusted

to put the most weight on the forecast with the smallest predicted squared bias in each

period. The parameter γ provides shrinkage to the weights by redistributing more or less

weight to the best models depending on its predicted bias. When γ is small, the weights

are close to equal weights. When γ is large, nearly all weight is placed on a single model.

This explains why the γ = 1 case is nearly identical to the CSR results. The weights are

constrained to be very close to the equal weights. In the γ = 10 case, the weights have much

more variation and more weight is placed on the forecasts with the lowest expected bias. It

is the conditional bias estimates that drives the consistent improvement in forecast accuracy

observed here relative to the CSR results. The gains are modest because there is not much

conditional bias to exploit among the considered models and the chosen DGP.

The last thing to note from this exercise is that the combinations which bias-correct the

forecasts before combining forecasts systematically yield higher MSFE than the combinations

that use the predicted bias to construct weights of the uncorrected forecasts. This illustrates

the insights discussed in Section 2.2. Bias-correcting the individual forecasts can introduce

noise that the combined forecast cannot remove. However, that same information can be

used to construct combination weights that improve upon other combination methods such

as CSR.

A2 Supplementary material for Section 3

We use real time data for the forecasting exercise. This means that we estimate all of

our models anew each quarter using the most up-to-date data available in that quarter.

Therefore, over time, the information that informs the forecasts can vary greatly. The most

affected measure we consider is the HP filtered output gap. Figure A3 shows the significant

variation that this procedure introduces. The HP filter is one-sided at the end of the sample

which leads to substantial revisions once new data is available. The process of re-estimating

the models anew each quarter ensures that we are never evaluating a forecast that a forecaster
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Table A1: Monte Carlo Results for Scale-Location DGP - Weak and Partially Weak Predictors

ρ = 0 ρ = 0.1 ρ = 0.25 ρ = 0.5 ρ = 0.95

Model Rel. MSFE CW-stat Rel. MSFE CW-stat Rel. MSFE CW-stat Rel. MSFE CW-stat Rel. MSFE CW-stat

x1 0.9637 1.92 0.9730 1.65 0.9833 1.31 0.9951 0.74 1.0015 -0.27
x2 0.9641 1.92 0.9733 1.66 0.9815 1.37 0.9923 0.84 1.0016 -0.25
x3 1.0012 -0.12 1.0012 -0.14 1.0006 -0.22 1.0009 -0.15 1.0015 -0.23
x4 1.0006 -0.21 1.0009 -0.23 1.0011 -0.29 1.0011 -0.22 1.0014 -0.25
x5 1.0015 -0.28 1.0015 -0.31 1.0012 -0.18 1.0018 -0.22 1.0016 -0.24
x6 1.0011 -0.24 1.0011 -0.31 1.0011 -0.15 1.0016 -0.21 1.0015 -0.27

EW - 6/ CSR (k=1) 0.9757 2.73 0.9816 1.64 0.9881 1.38 0.9957 0.98 1.0014 -0.26
CSR (k=2) 0.9615 2.73 0.9699 2.46 0.9786 2.09 0.9883 1.43 1.0008 0.03
CSR (k=3) 0.9511 2.73 0.9610 2.47 0.9712 2.13 0.9830 1.56 1.0008 0.09

COW- 6 0.9366 2.65 0.9491 2.40 0.9641 2.04 0.9851 1.39 1.0138 -0.12
COW - 21 0.9694 2.27 0.9868 2.03 1.0062 1.57 1.0260 1.14 1.0599 0.12
COW - 41 1.0024 2.05 1.0290 1.71 1.0526 1.32 1.0662 0.88 1.1153 0.00

PEW - 6 (γ = 1) 0.9757 2.73 0.9816 2.45 0.9881 1.99 0.9957 1.03 1.0014 -0.26
PEW - 21 (γ = 1) 0.9615 2.73 0.9699 2.46 0.9785 2.09 0.9883 1.43 1.0008 0.03
PEW - 41 (γ = 1) 0.9512 2.73 0.9610 2.47 0.9711 2.13 0.9830 1.56 1.0008 0.09

PEW - 6 (γ = 10) 0.9754 2.59 0.9814 2.32 0.9875 1.93 0.9955 1.01 1.0014 -0.25
PEW - 21 (γ = 10) 0.9615 2.65 0.9698 2.39 0.9780 2.06 0.9881 1.42 1.0009 0.03
PEW - 41 (γ = 10) 0.9514 2.68 0.9612 2.42 0.9708 2.12 0.9829 1.55 1.0008 0.09

BC-OW - 6 0.9393 2.62 0.9608 2.18 0.9623 2.02 0.9875 1.40 1.0195 -0.04
BC-OW - 21 0.9706 2.28 1.0048 1.74 1.0101 1.59 1.0281 1.13 1.0720 0.08
BC-OW - 41 1.0166 1.95 1.0596 1.45 1.0645 1.26 1.0891 0.83 1.1308 0.04

BC-EW - 6 0.9797 1.81 0.9885 1.33 0.9917 1.05 0.9986 0.45 1.0056 -0.09
BC-EW - 21 0.9651 2.28 0.9769 1.79 0.9817 1.57 0.9907 1.02 1.0043 0.05
BC-EW - 41 0.9544 2.47 0.9681 2.01 0.9738 1.82 0.9851 1.29 1.0036 0.14

# Simulations: 250 250 250 250 250

Notes: Monte Carlo simulations for combined forecasts of a location-scale model following Lima and Meng (2017) given by
equation A2. Each simulation recursively forecasts 100 periods and the MSFE is recorded. The Clark and West (2007) test
statistic (CW-stat) for equal forecast accuracy of the combined forecast relative to a simple average of past observations is
calculated for the 100 forecasts. The table shows the mean relative MSFE and mean CW-stat for 250 simulations.
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Figure A3: Real-time data used for forecasting
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could not have constructed at that time.

Figure A4 shows how the revisions affect our target series: PCE inflation. We follow

the standard practice in the literature of using a composite series of the second releases of

PCE inflation to compare to the real-time forecasts. This is because some revisions to the

data that take place years in the future are due to definition changes or normalization that

a forecaster would not have been attempting to forecast. As you can see in Figure A4, these

changes can results in some large revisions to the PCE measure over time.

A2.1 Real-time forecasting procedure

The out-of-sample forecasts are performed recursively using the following procedure at each

time period t:
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Figure A4: Real-time data used for forecasting
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1. Each candidate forecast is estimated on vintage τ data.

2. Each candidate forecast is used to construct a four-quarter-ahead forecast.

3. Equation (11) in Section 3.1.1 is estimated on the available real-time forecast errors

for each of the candidate forecasts.

4. Equation (11) in Section 3.1.1 is used to predict the expected forecast errors of each

model to construct êi,t+4 and ξ̂i,t+4.

5. The predicted errors are used to construct weights, and the weights are used to con-

struct the combined forecast.

A2.2 Exploiting time-variation in Phillips curves

This section present supplementary results to complement the analysis in Section 3 on fore-

casting US inflation. The first set of results shows that the small full-sample gains observed

for COW strategies actually coincide with economically meaningful periods. Specifically,

most of the gains in forecast accuracy occur around recessions.

The second exercise reinforces the first by showing how weights shift in real time between

Phillips curve like forecasts and the ARIMA forecasts.

A2.2.1 Economic significance

Although the average improvement in forecast accuracy of the COW strategies are not large

in absolute terms, the timing of when the gains occur is economically significant. Figure

A5 illustrates this point by comparing the observed difference in the absolute forecast errors

(AFE) between the most accurate individual forecast, the AO forecast, to PEW, EW, OWS,

and BC-OWS combined forecasts. Values that are above zero correspond to a more accurate

combined forecast. Comparing PEW to the AO forecast, there are long periods where there

is no difference. This result reflects the fact that the AO forecast is predicted to be the best

forecast in many periods and given a weight near one. However, during and immediately
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Figure A5: Economic significance
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Notes: Shaded regions show the NBER recession dates. The lines show the difference in squared forecast errors for four-
quarter-ahead forecasts of inflation between an AO model and a combined forecast. Values above zero correspond to a
smaller squared forecast error in the quarter for the combined forecast.

following recessions, in real time, the PEW weights shift towards PC-type models, which

generates large improvements in forecast accuracy. Recall that these are four-quarter-ahead

forecasts. Therefore, by predicting the biases, we are able to somewhat capture in real time

the time-varying efficiency of our different model specifications.

The EW and OWS strategies show similar improvements in forecast accuracy around

recessions. However, these improvements are due to the hedging benefit of model averag-

ing. Because forecast accuracy among the models diverges greatly around recessions, placing

some weight on all models mitigates the impacts of the worst performing forecast. However,

this comes at the expense of less weight on the best models. Therefore, although the over-

all forecast improvements of COW strategies are often small relative to other considered

methods over the full sample, the improvements occur at relevant times – mainly around

recessions – and are less prone to significant falls in accuracy overall relative to the näıve

benchmark.
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Figure A6: This figure depicts the PCE measure of US inflation from 1970Q1 to 2014Q1 (solid), the ex
post predicted weights forecast (dashed), and the cumulative weight placed on the Phillips curve forecasts
relative to equal weights for the ex post predicted weights (shaded blue). The dark bars indicate the NBER
recession dates.

Finally, the BC-OWS case shows the perils of bias-correcting the underlying forecasts

before combining. The large biases of the late 1970s and early 1980s are predicted to continue

into the mid-1980s, which drives a significant and persistent deterioration in the combined

forecast relative to the AO forecast. A similar event occurs in the mid-1990s. The COW

strategies, on the other hand rely only on the relative size of the predicted bias to assign

weights, which delivers more stable and accurate combined forecasts.

A2.2.2 Forward versus backward-looking weights and shifting weights around

recessions

There is a known time variation in the forecast accuracy of Phillips curve specifications. This

known time variation is one source of the predictable information in the forecast errors, which

is exploited by our combination strategy. To illustrate how the forward-looking weights use

this information, we compare a backward-looking strategy with a forward-looking strategy

using six univariate and six Phillips curve forecasts of inflation. We use the Predicted

20



Exponential Weight given by Equation (12) and a backward-looking modification

ŵ∗AO(IT ) =
1∑n

l=1 exp(−γb̃ 2l,T )

(
exp(−γb̃ 21,T ), . . . , exp(−γb̃ 2n,T )

)′
, (A3)

where

b̃i,T =
1

4

4∑
j=1

ei,T−j.

We will refer to the backward-looking case as AO predicted weights because the prediction

takes the same form as the AO forecast model used for inflation. The AO Predicted Weights

are similar to the weights explored by Stock and Watson (2004) and capture the idea of

weighting models by recent past performance. For Predicted Exponential Weights we use

the output gap prediction. We set γ = 5 in both cases.

To assess how well the weights perform, we compare them against a counterfactual series

of ex post weights that are constructed by using the realized ex post forecast error (ei,T+4)

of each model rather than b̃i,T in the above weights equation. This reveals the maximum

improvement in MSFE possible using this combination method. Figure A6 presents the ex

post weights and their implied combined forecast for PCE inflation. The ex post weights

produce an unbiased combined forecast that is a 26% improvement over both the AO and

equal weights combined forecast in RMSFE.1 The cumulative weights illustrated in the graph

are constructed by summing the weights placed on the PC forecasts in each quarter and

subtracting it from one half (
∑

i∈PC wi,t−0.5). Therefore, the graph provides an approximate

description of how the cumulative weight on the PC forecasts shifts relative to equal weights

over time. Points that are above zero indicate that greater than half of all weight is on the

PC forecast specifications. Points below zero represent that greater than half of all weight

is on the univariate forecast specifications.

Figure A7 shows the AO weights compared to the ex post weights. The backward-looking

strategy results in a modest but statistically significant 5% loss in the relative RMSFE

1The AO and equal weights combined forecasts have a relative RMSFE of 1.0004. The benchmark
combined weights also result in a slight increase in RMSFE compared to actually forecasting with the ex
post best model in each period.
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Figure A7: This figure depicts the PCE measure of US inflation from 1970Q1 to 2014Q1 (solid), the AO
weights combined forecast (dashed), the cumulative ex post weights relative to equal weights (shaded blue),
and the cumulative AO weights relative to equal weights (shaded red). The dark bars indicate the NBER
recession dates.

compared to equal weights and the AO forecasts. The reason for why this strategy fails to

improve upon equal weights is clearly visible in the figure. The backward-looking weights

are negatively correlated with the ex post weights (correlation equal to -0.138). The strategy

shifts weight to the PC forecasts after periods when the PC forecasts perform well, which

is of course precisely when the strategy is about to lose forecast efficiency relative to the

univariate forecasts.

Figures A6 and A7 also illustrate the relationship between the PC forecast efficiency

and economic downturns. The ex post weights consistently shift toward the Phillips curve

forecasts in the periods surrounding the NBER recession dates. A forward-looking strategy

can take advantage of this regularity by shifting weight toward PC forecasts when real

activity is weak and by shifting weights toward the univariate models when real activity is

strong.

Figure A8 shows the weights for the forward-looking strategy plotted against the ex post

weights. The Predicted Exponential Weights often deviate far from the ex post weights in
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Figure A8: This figure shows the PCE measure of US inflation from 1970Q1 to 2014Q1 (solid), the
Predicted Exponential Weights combined forecast (dashed), the cumulative ex post weights relative to equal
weights (shaded blue), and the cumulative Predicted Exponential Weights relative to equal weights (shaded
green). The dark bars indicate the NBER recession dates.

this case but are positively correlated with them over time (correlation equal to 0.178). The

positive correlation translates into a statistically significant 7% improvement in RMSFE over

both equal weights and the AO forecasts for the set of considered models. By forecasting

the changes in the relative forecast accuracy of the models, the weights are able to shift in

real time away from model specifications that are losing forecast accuracy to specifications

that are gaining accuracy.

A3 Supplementary material for Section 4

We initiate our estimates of the bias for this exercise using the in-sample period 1999Q1 -

2001Q1. We estimate the AR(1) model using maximum likelihood and the Kalman filter

recursively thereafter. The Kalman filter allows us to accommodate missing observations so

that our bias predictions use all available information, subject to the real-time restrictions,

to construct each bias forecast. Figure A9 shows a histogram of all the AR(1) coefficients

that we recursively estimate for the individual survey participant’s forecast errors. There is
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Figure A9: AR(1) Coefficients for Conditional Bias Estimates from ECB SPF
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Notes: The figures shows a histogram of all the AR(1) coefficients recursively estimated for the individual survey partici-
pant’s forecast errors in real-time.

considerable serial correlation that we can exploit in the survey to construct conditionally

optimal weights.

Figure A10 shows the target inflation series, the range of the surveyed forecast responses

in the ECB SPF for each quarter, the equal weights forecast, and the COW forecast. The

shrinkage that is applied to the COW forecasts shrinks the weights toward equal weights.

The shading indicates quarters where the COW forecast is more accurate and represents

68% of the out-of-sample period.

The principle combination strategy that we compare to COW is the combination ap-

proach of Issler and Lima (2009). Issler and Lima (2009) propose bias-corrected optimal

weights and show that strategy yields the optimal combined forecast in an ergodic panel

data setting. Like our setup, they assume that forecasters possess a menu of forecasts of fhi,t,
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Figure A10: HCPI inflation and forecasts
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Notes: The figures shows target real-time HCPI inflation series plotted against the highest and lowest forecasts recorded in
the ECB Survey, the equal weights forecast, and the COW forecast. The shaded areas highlight quarter where the COW
forecast is more accurate.
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where i = 1, 2, ..., N and h is the forecast horizon. The forecast errors of each forecast are

assumed to be

(fhi,t − yt) = ki + ηt + εi,t,

where ki is the fixed bias of each forecast, εi,t is the individual forecast error, ηt is an aggregate

error common to all forecasts.

Issler and Lima show that given these assumptions an optimal forecasting strategy is to

choose weights to minimize

Et

[
1

N

N∑
i=1

ωi,tf
h
i,t −

1

N

N∑
i=1

ωi,tk̂i − yt

]2

where k̂i is consistently estimated for the in-sample period ending in t = R as

k̂i =
1

R

R∑
t=1

fhi,t −
1

R

R∑
t=1

yt.

In the real-time forecasting exercises, we choose wi,t = 1/N and we update the estimates of

ki recursively as new data arrives.

A4 Supplementary material for Section 5

Figure A11 shows the individual forecasts and the real-time target series for each variable

and country. The dashed line indicates the start of real-time forecasts. We make minimal

adjustments to the real-time data set, which at times can exaggerate or ameliorate forecast

biases as the sample sizes change.

The most significant biases are found in the direct forecasts (DF) of interest rates. The

DF forecasts are constructed as

yj,t+4 = c+ βxj,t + εj,t+4

where xj,t is real GDP growth when forecasting the interest rate. Real GDP growth does
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not have a significant downward trend in any of the considered country to match the decline

in the interest rate. Therefore, the level of the forecast is mostly determined by c, the

intercept. This leads to the large and persistent biases seen in Figure A11 and documented

in Table 4 in the main text, which reflects the fact that interest rates were high early in the

sample. The effects of the high interest rates early in the sample is clearly seen in the NZL

forecasts, where later vintages of real GDP have missing data pre-1980, which shorten the

in-sample estimation period. We do not impute this data from earlier vintages, which means

the average interest rate over the in-sample estimation period is lower for the forecasts made

late in the sample.

The large biases are useful to make the point that bias correction may be a good strategy

to pursue when there are obvious biases. We also do not want to alter the forecasts we have

chosen ex post. We chose twelve models to forecast all five different variables of interest before

knowing the outcome. In keeping with our real-time assumptions, ex ante, a forecaster never

knows how accurate a forecast is. That is the reason why combination strategies are pursued.
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Figure A11: Out-of-sample forecasts
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Notes: Four quarter-ahead out-of-sample forecasts plotted against the target series. Real-time forecasts begin in 2000q1, which is indicated by the vertical dashed line.
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